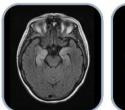
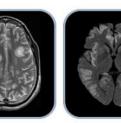


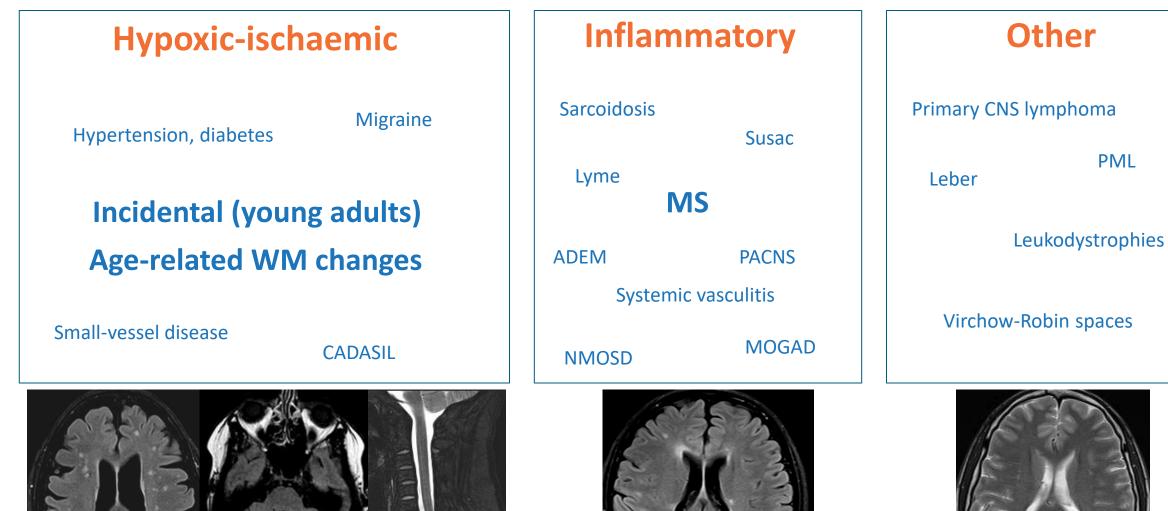
Radiología en la Patología Neurodegenerativa, Desmielinizante e Infecciosa del SNC


15 y 16 de febrero de 2024 | MADRID


Sede: CINESA. C/ Fuencarral 136

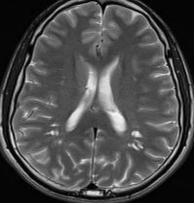
Resonancia Magnética en la Esclerosis Múltiple

Àlex Rovira Secció de Neurorradiologia. Servei de Radiologia Hospital Universitari Vall d'Hebron Barcelona

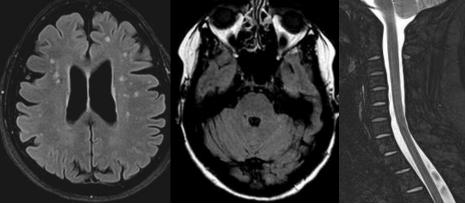

Objective measure

Powerful tool across the whole spectrum of MS management in the clinical setting:

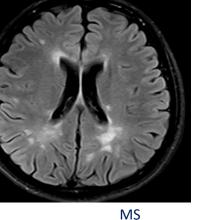
- Diagnosis
- Prediction of prognosis
- Monitoring disease activity/ clinical status / treatment response
- Early detection of treatment –related adverse events
- Outcome measure in trials of disease modifying therapies (DMTs)


Most important paraclinical tool for diagnosing and monitoring MS

Multifocal white matter abnormalities



Modified from F. Barkhof

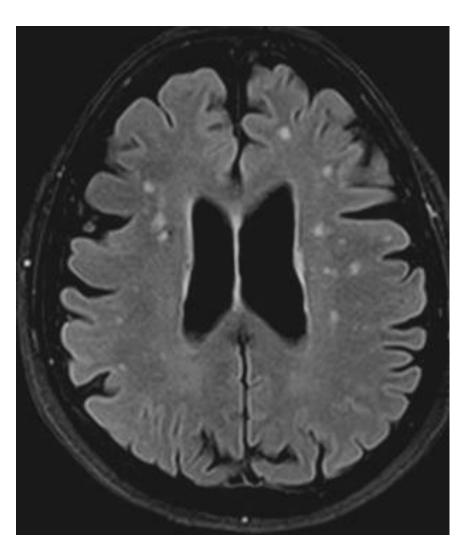

PML

Virchow-Robin

Incidental

Misdiagnosis of multiple sclerosis

	Cedars $(n = 19)$	UCLA $(n = 24)$
MS misdiagnosed by neurologist	14 (74%)	20 (83%)
MS misdiagnosed by non-neurologist	4 (21%)	2 (8%)
Under care of neurologist for MS but specialty of physician who made the misdiagnosis unknown	1 (5%)	2 (8%)
Years from misdiagnosis to evaluation at Cedars or UCLA (mean)	0.1-20 (4.1)	0.1–19 (4.0)
CSF ^a analyzed prior to or during evaluation at Cedars or UCLA	14 (74%)	20 (83%)
Oligoclonal bands unique to CSF	4 (29%)	3 (13%)
Other CSF abnormalities	1 (5%)	1 (4%)
Normal CSF	6 (32%)	11 (46%)
CSF Results unavailable	3 (16%)	5 (21%)
Clinical syndrome atypical for MS	14 (74%)	16 (67%)
Normal exam	3 (16%)	3 (13%)
Radiographic red flags	15 (79%)	20 (83%)
Normal brain and spinal cord MRIs	4 (21%)	2 (8%)

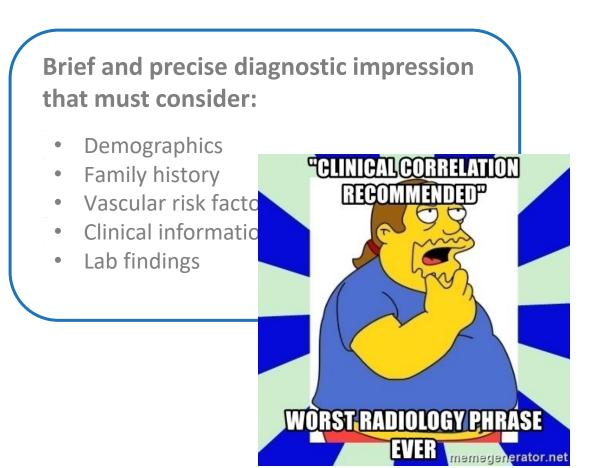

Almost one in five patients (19%) referred to two academic MS centers with an established diagnosis of MS did not have MS.

Final diagnoses of the 43 patients misdiagnosed with MS.	
Migraine	
Migraine with nonspecific white matter changes	5
Migraine with normal MRI	1
Migraine and cervical stenosis	1
Autoimmune	
Radiologically isolated syndrome (Browne et al., 2014)	4
Neuromyelitis optica spectrum disorder	2
Transverse myelitis, infectious or post-infectious	2
Lupus (no myelitis)	2
Stiff-person syndrome with anti-GAD antibody	1
Anti-Calcium channel antibody with confluent white matter changes	1
Myasthenia gravis	1
Miscellaneous	
Cervical spondylosis with stenosis	3
Peripheral neuropathy	3
Optic neuropathy (without optic neuritis)	3
Fibromyalgia	2
Pre-syncope and small vessel ischemic disease	1
Bell's palsy	1
Psoriasis, hypothyroidism, and small vessel ischemic disease	1
Encephalitis, infectious	1
Asymptomatic demyelinating changes likely due to TNF alpha inhibitor	1
Mitochondrial encephalomy opathy, lactic acidosis, and stroke-like episodes	1
Myelopathy, copper deficiency	1
Evaluation ongoing or lost to follow-up, most likely diagnosis:	
Cobalt poisoning	1
Pompe (glycogen storage disease type II)	1
Hypercoagulable state	1
Central nervous system vasculitis	1
Hereditary spastic paraplegia	1

MRI focal white matter lesions (incidental, vascular?) Prevalence 5–10% (20–40 years)

- Focal WMLs involving the subcortical frontal white matter
- Small and nonconfluent
- Stable over time
- Weak (or NO) association with vascular risk factors
- More prevalent in <u>migraine</u> headaches
- No associated lesions posterior fossa, spinal cord

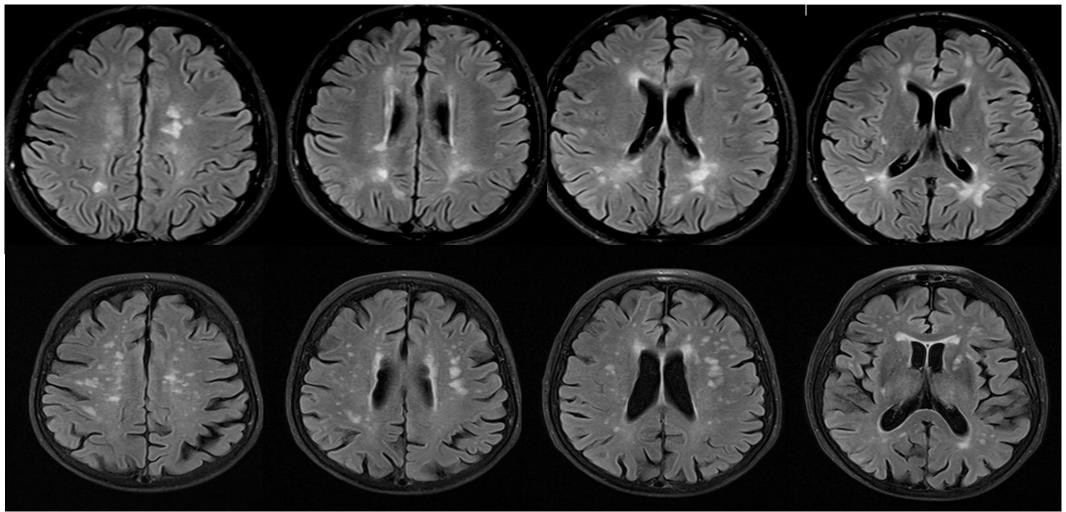
Multiple sclerosis Prevalence <0,1% (20–40 years)


WML, white matter lesion. Charil A et al. Lancet Neurol 2006;5:841–52; Image courtesy of Dr Rovira.

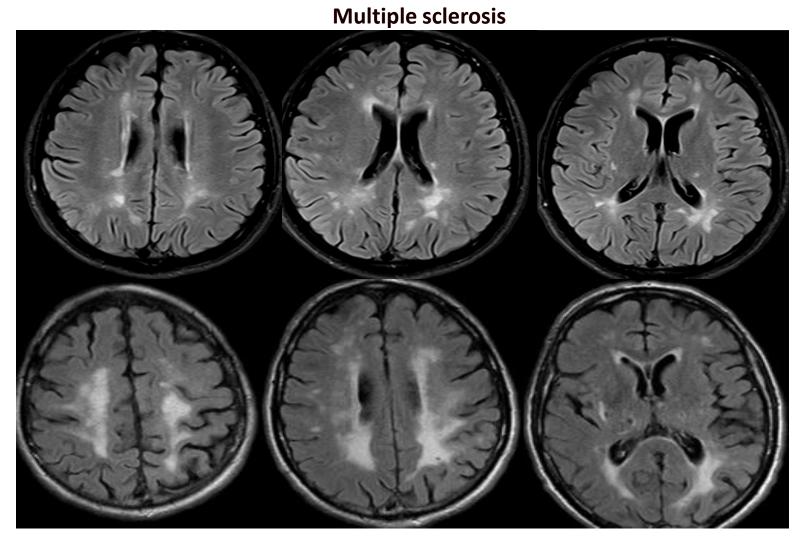
Diagnosis of MS: Identifying typical lesions

Comprehensive checklist for evaluation of focal lesions

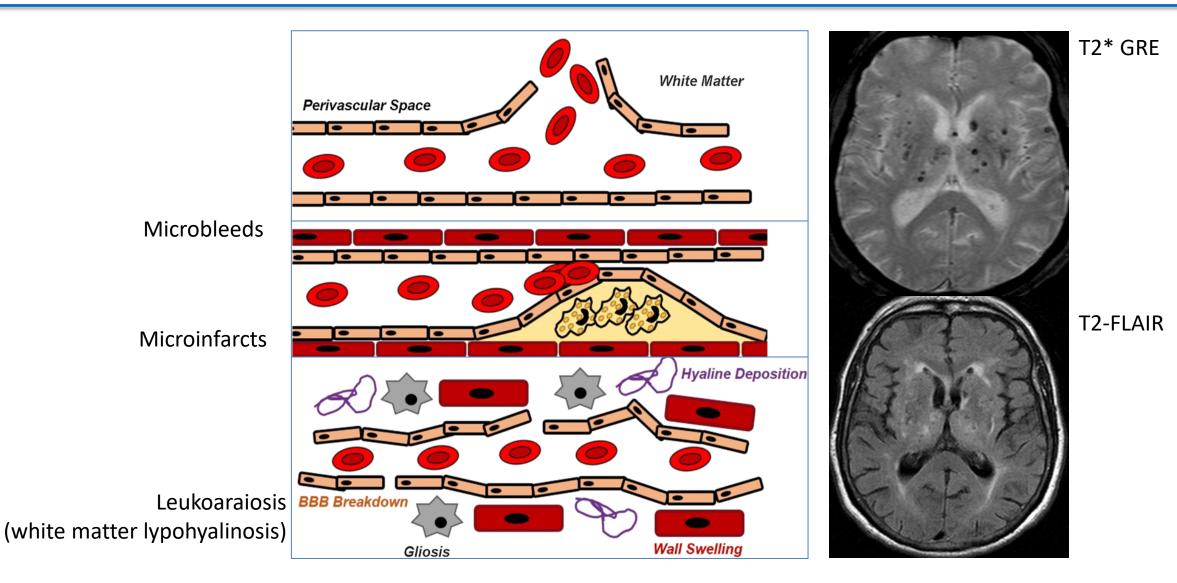
Systematic reading


- Lesion distribution / involvement
 - Subcortical/periventricular
 - U-fibres
 - Cortical grey matter
 - Deep grey matter
 - Corpus callosum
 - Brainstem
 - Spinal cord
- Lesion shape
- Central vein sign, hypointense rims (SWI)
- Enhancement pattern

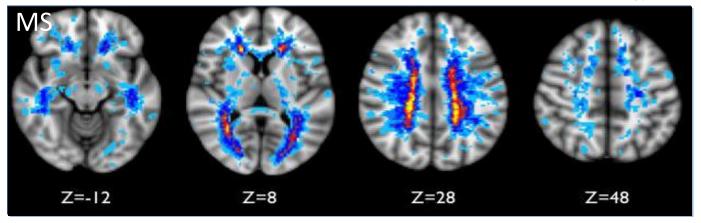
SWI, susceptibility weighted imaging. Rovira A et al. Nat Rev Neurol. 2015;11:471–82.


Distribution pattern

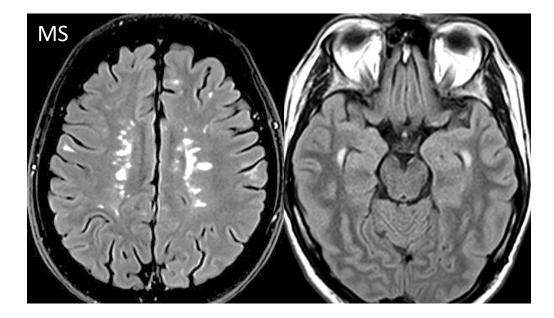
Multiple sclerosis

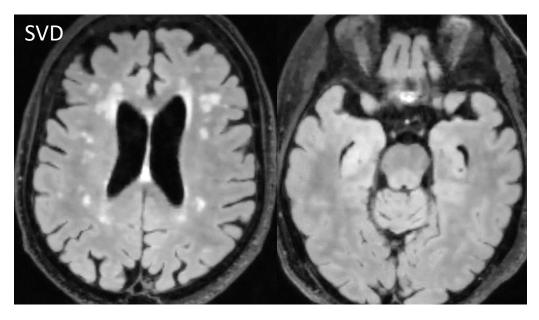

Age-related white matter changes

Distribution pattern

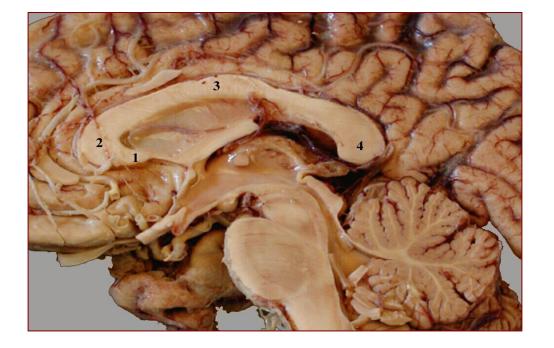

Small vessel disease

Lipohyalinotic small-vessel disease: MRI findings




Brain MR imaging features: MS

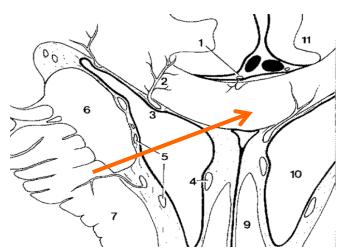
Matthews et al. Neurology 2013



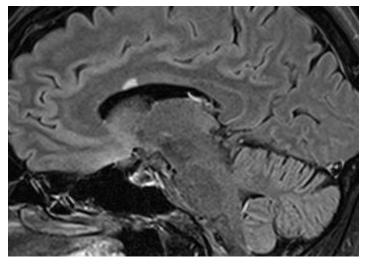
Periventricular and in inferior temporal lobe



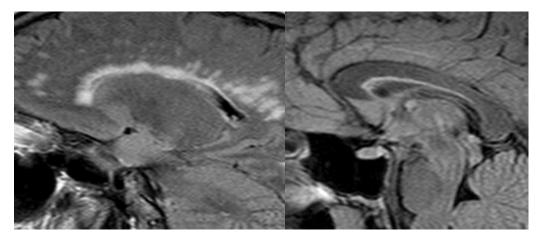
Corpus callosum involvement



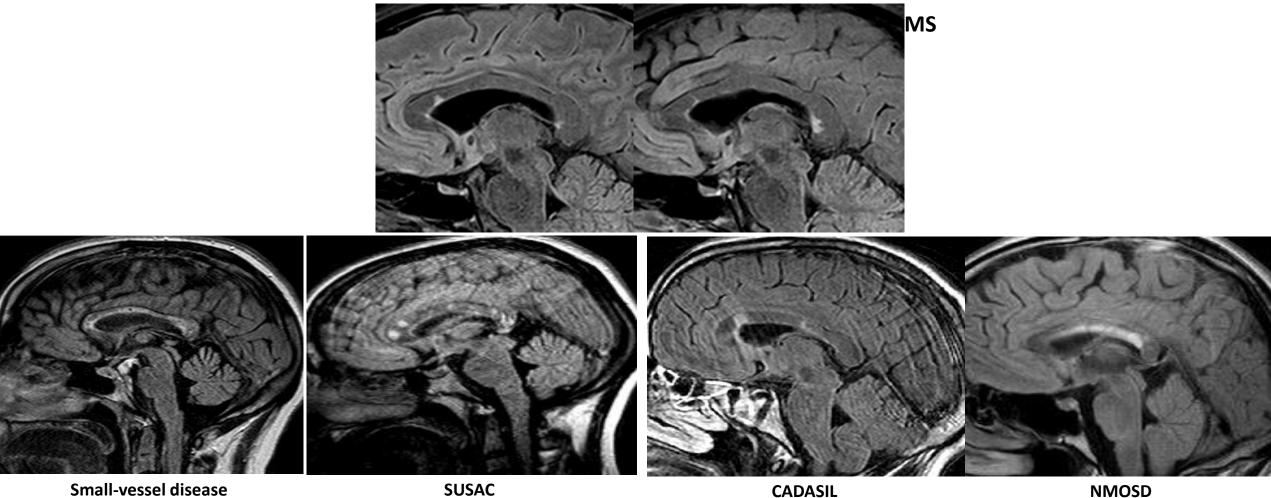
Multiple Sclerosis



Cerebrovascular disease

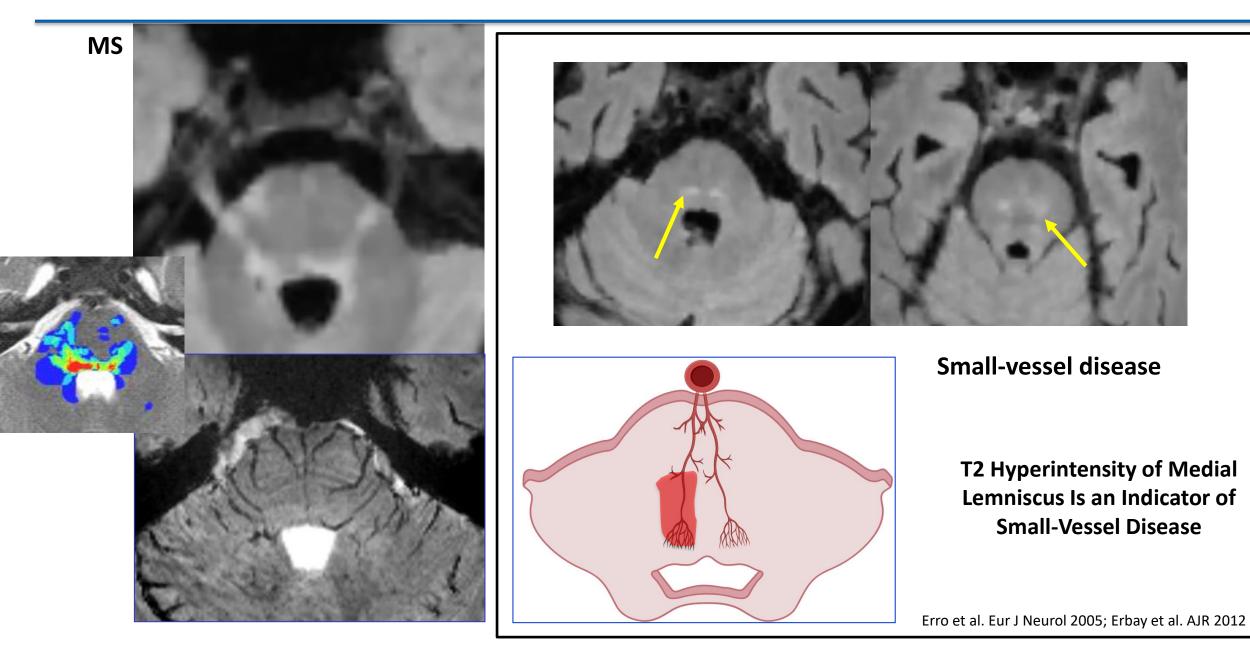

Corpus callosum involvement

R Wotfram-Gabel et al. Surg Radiol Anat 1992;14:17-21

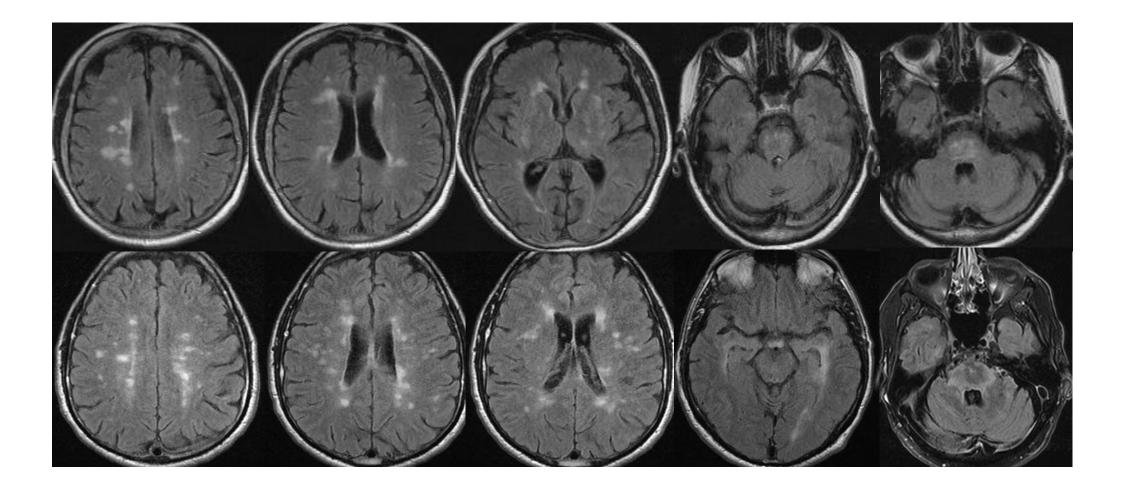


Vascular lesions

Corpus callosum involvement

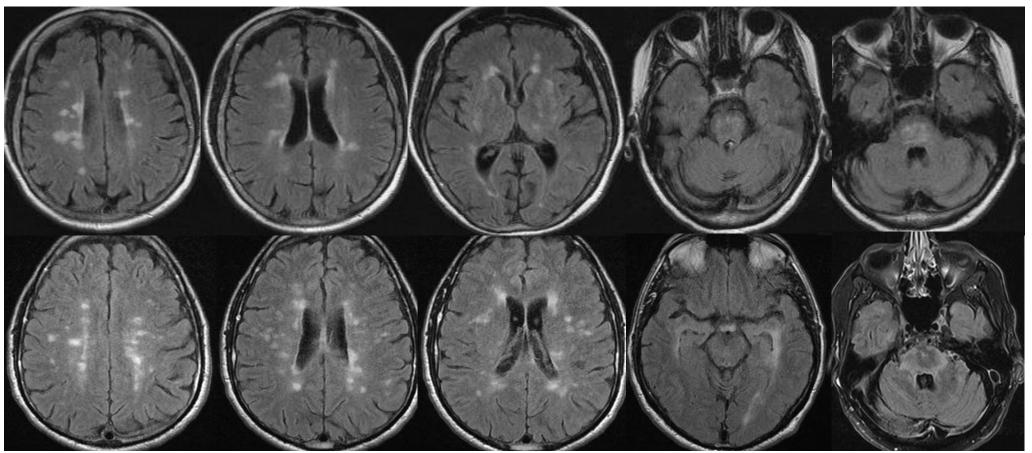

mall-vessel diseas (diabetes) SUSAC (100%)

(40%)


(30%)

Uchino et al. Eur Radiol 2006;16:905-14; Susac et al. Neurology 2003;61:1783-7; O'Sullivan et al. Neurology 2001;56;628-34

Brainstem involvement



Multifocal White Matter Abnormalities

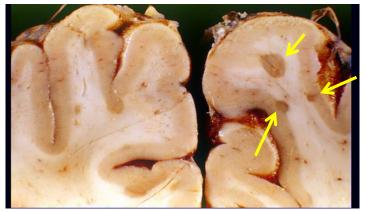
Multifocal White Matter Abnormalities

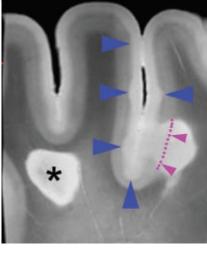
Small-vessel disease + MS

• Characterised by:

- demyelination¹
- microglial activation¹
- often meningeal inflammation^{2,3}

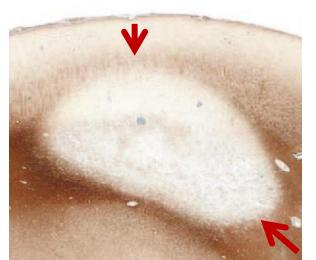
• Less often associated with⁴


- immune cell influx
- complement activation
- BBB leakage
- Difficult to detect by MRI⁵
- Three types of cortical lesion*6



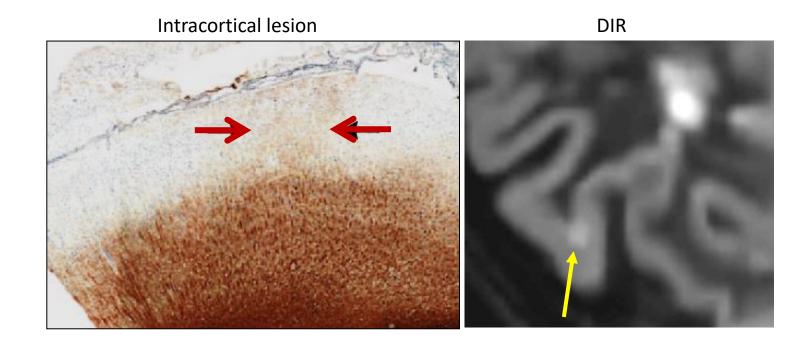
*Based on post-mortem tissue samples taken from 22 patients with MS. Leukocortical Type I lesions involve neocortex and subcortical white matter; intracortical Type II lesions are confined to the neocortex and often located around a vessel; subpial Type III lesions extend from the pial surface into the neocortex. 1. Peterson JW *et al. Ann Neurol* 2001; 2. Lucchinetti CF *et al. N Engl J Med* 2011; 3. Magliozzi R *et al. Ann Neurol* 2010; 4. Klaver R *et al. Prion* 2013; 5. Filippi M *et al. Neurology* 2010; 6. Wegner C *et al. Neurology* 2006

Cortical lesiones: type I (juxtacortical)


Courtesy of Dr. García-Merino

9T MRI (T2) Schmierer et al. Brain 2010

T2-FLAIR


Lucchinetti et al. NEJM 2011;365:2188-97

leukocortical lesion

Cortical lesiones: type II

Lesions within the cerebral cortex that do not extend to juxta-cortical white matter

- cMRI detects <10% of type II lesions (very small size)
- Improved sensitivity by using DIR or heavily 3D T1-weighted sequences

Geurts et al. J Neurol 2008; Wattjes et al. Am J Neuroradiol 2006; Geurts et al. Radiology 2005; Roosendaal et al. Mult Scler 2009

Subpial demyelination: cortical lesiones type III

		Mean	Percentage
		lesion	of total
		size	demyelina-
Lesion type	Number	(mm^2)	ted Area
1 (mixed WML/GML)	17	29.2	14.4
2	18	2.4	1.2
3	65	35.5	67.0
4	9	66.2	17.3
Intracortical lesions (2–4)	92	32.1	85.6

Bo et al. J Neuropathol Exp Neurol 2003

Subpial demyelination

Meningeal inflammation (B and T cells)

Most common cortical lesion Affects the largest cortical area A common appearance:

- long ribbons of subpial demyelination, often affecting several adjacent gyri
- wedge-shaped, with the basis at the surface of the brain


Cortex Meningeal inflammation Ovoid intracortical lesion U-shaped lesion White matter White matter

Absinta et al. Nat Rev Neurol 2016

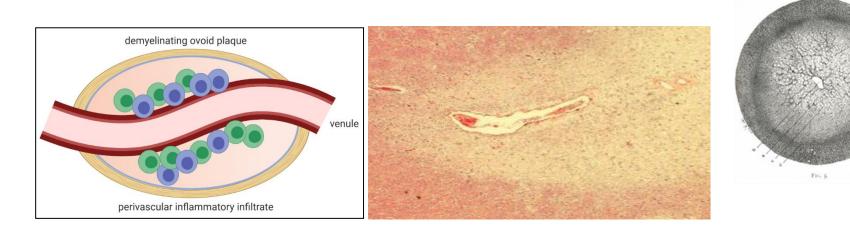
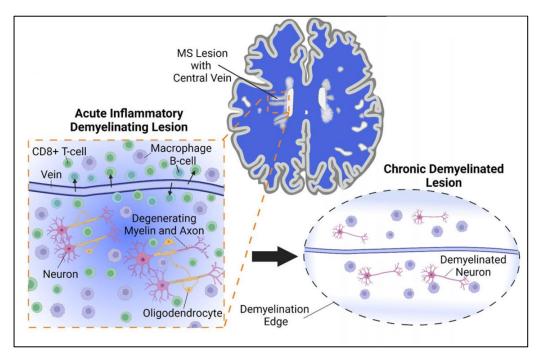
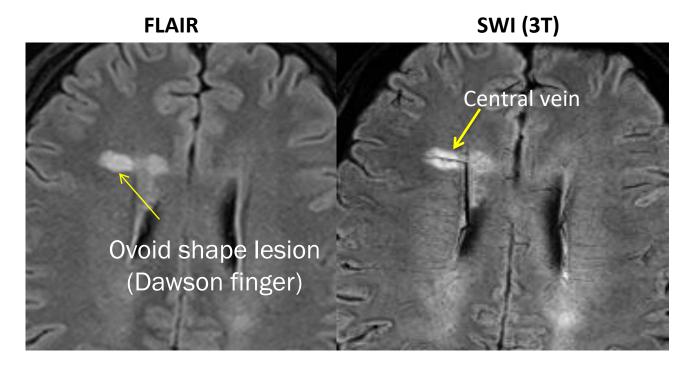
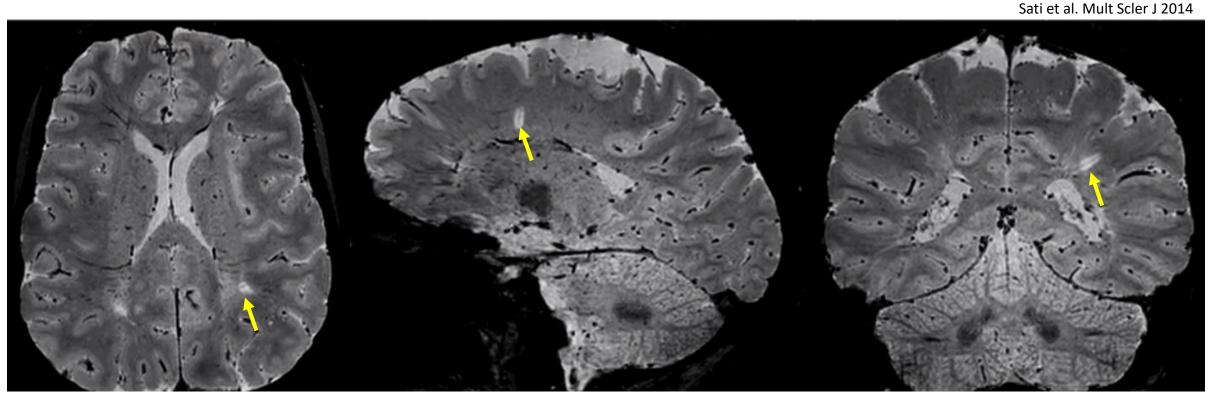

Cortical lesions: topography

Figure 2. Cortical Lesion Probability Map in Patients With Multiple Sclerosis (MS)/Clinically Isolated Syndrome (CIS) z=34 z=44 z=54 z=64 z=74 z=84 z=94 z=104 z=114 z=124 z=134 z=144 Patients, No. 8 9 10 6 7


Cortical lesions: diagnostic performance

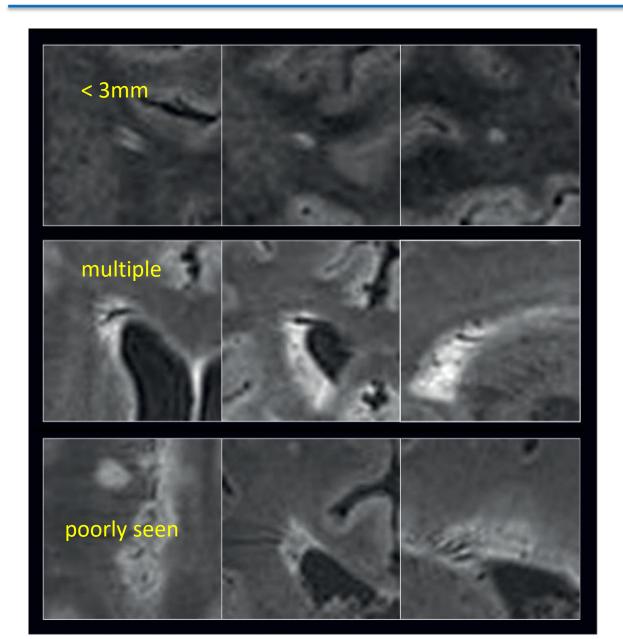


Ovoid shape: Dawson finger


Dawson J. Trans Roy Soc Edinb 1916; 50:517-740 Horowitz et al. Am J Neuroradiol 1989;10:303-5

Gill et al., Eur J Immunol 2023

Central vein sign: 3D T2*w Segmented EPI GRE (T2*-EPI)

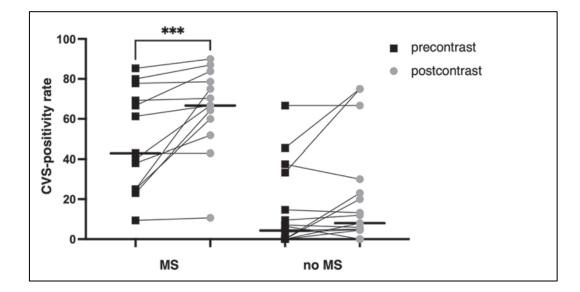


- 3T Magnet
- 650 μm isotropic voxels
- Whole brain coverage in 6 minutes

NAIMS criteria

- Thin hypointense line or small dot
- Visualized in at least two perpendicular planes (and appear as a thin line in at least one plane)
- Small apparent ven diameter (<2mm)
- Runs partially/entirely through the lesion
- Positioned centrally in the lesion

Central vein sign: 3D T2*w Segmented EPI GRE (T2*-EPI)


NAIMS exclusion criteria

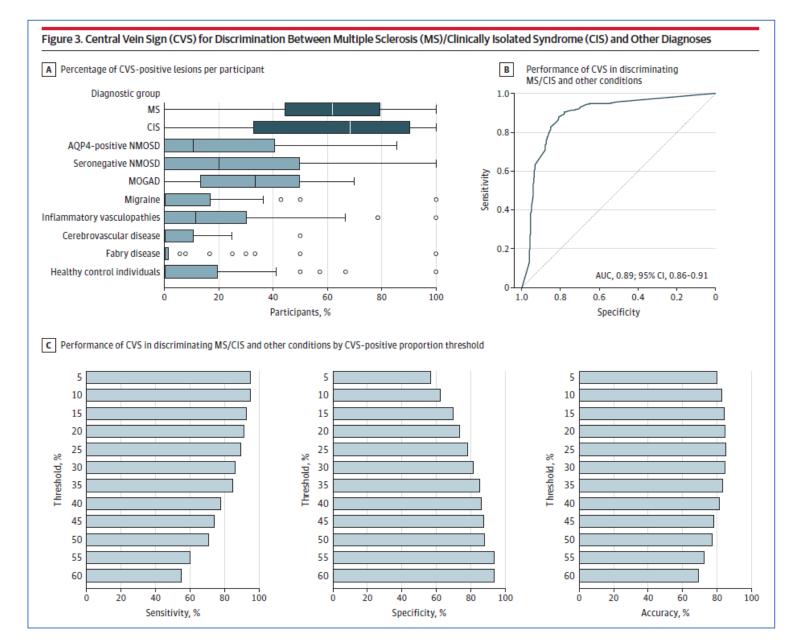
- Lesion is <3mm in diameter
- Confluent lesions
- Lesion has multiple veins
- Lesion is poorly visible

Central vein sign (CVS): effect of using GBCA

3T magnets

- Fraction of WML that were CVS-positive on pre-contrast and post-contrast images was 48% and 58% (MS) an 7% and 10% (no-MS)
- Median patient-level CVS-positivity rate on pre-contrast and post-contrast images was 43% and 67% (MS) and 4% and 8% (non-MS)

Daboul et al. AJR 2023

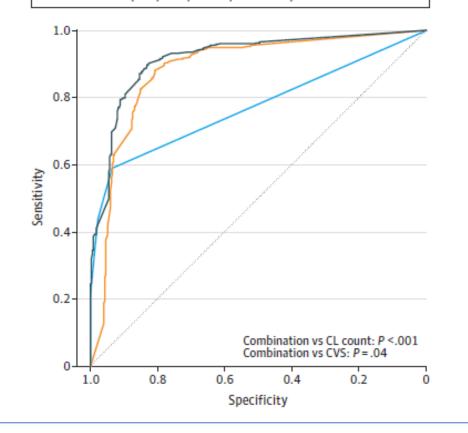

Pre-injection During injection Post-injection (15 min)

- CVS in the MS population was **73%**.
- Diagnostic performance in MS cases, providing a pooled specificity of 92% and a sensitivity of 95%.
- The optimal **cut-off value was 40%** with excellent accuracy calculated by the area under the ROC (0.946).
- The 3D-EPI sequences showed both a higher pooled proportion compared to other sequences
- The 1.5 Tesla (T) scanners showed a lower (58%) proportion of MS lesions with a CVS compared to both 3T (74%) and 7T (82%).

Up to August 24, 2020 35 studies for quantitative analysis)

Study	MSL Vein+ M	SL Total	Proportion				95% C.I.	Weight
Al Zandi et al. 2018	330	380	0.87				[0.83; 0.90]	3.5%
Anan et al. 2020	223	453	0.49				[0.45; 0.54]	3.6%
Campion et al. 2017	291	338	0.86			-8-	[0.82; 0.89]	3.5%
Clarke et al. 2020a	120	240	0.50		-		[0.44; 0.56]	3.5%
Clarke et al. 2020b	410	636	0.64				[0.61; 0.68]	3.6%
Cortese et al. 2018	625	783	0.80				[0.77; 0.82]	3.6%
Darwish et al. 2018	281	572	0.49				[0.45; 0.53]	3.6%
Do Amaral et al. 2019	40	54	0.74				[0.61; 0.84]	3.2%
Eisele et al. 2019	404	887	0.46				[0.42; 0.49]	3.6%
Gabr et al. 2018	968	1076	0.90			-	[0.88; 0.92]	3.6%
Gaitán et al. 2013	11	15	0.73				[0.47; 0.90]	2.4%
Gaitán et al. 2020	327	380	0.86			-8-	[0.82; 0.89]	3.5%
Grabner et al. 2011	119	299	0.40				[0.34; 0.45]	3.6%
Guisset et al. 2020	535	756	0.71		- 🖽	-	[0.67; 0.74]	3.6%
Kau et al. 2013	16	19	0.84				[0.61; 0.95]	2.3%
Lamot et al. 2017	370	601	0.62				[0.58; 0.65]	3.6%
Lane et al. 2015	101	161	0.63	-			[0.55; 0.70]	3.5%
Lummel et al. 2011	572	711	0.80			-8-	[0.77; 0.83]	3.6%
Luo et al. 2014	106	139	0.76		_	—	[0.68; 0.83]	3.4%
Mistry et al. 2013	159	181	0.88				[0.82; 0.92]	3.4%
Mistry et al. 2016	305	436	0.70		- 💷		[0.65; 0.74]	3.6%
Öztoparak et al. 2016	107	163	0.66				[0.58; 0.73]	3.5%
Sinnecker et al. 2012	489	533	0.92			-8	[0.89; 0.94]	3.5%
Sinnecker et al. 2019	1709	3505	0.49	.			[0.47; 0.50]	3.6%
Solomon et al. 2018	191	236	0.81			— — —	[0.75; 0.85]	3.5%
Sparacia et al. 2018	128	313	0.41				[0.36; 0.46]	3.6%
Tallantyre et al. 2009	292	337	0.87				[0.83; 0.90]	3.5%
Tallantyre et al. 2011	740	924	0.80				[0.77; 0.83]	3.6%
Wuerfel et al. 2013	325	354	0.92			-8	[0.88; 0.94]	3.4%
Random effects model Heterogeneity: $l^2 = 98\%$, $\tau^2 =$		15482	0.73				[0.67; 0.79]	100.0%
10000 gonoly. 1 = 0070, t =	0.0010, 128 = 1001	.0. (0 = 0)		0.4 0.5	0.6 0.7	0.8 0.9		
					ons of MS			

Central vein sign: diagnostic performance



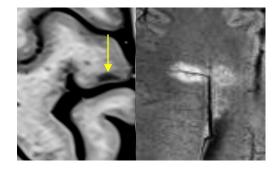

Cortical lesions plus central vein sign: diagnostic performance

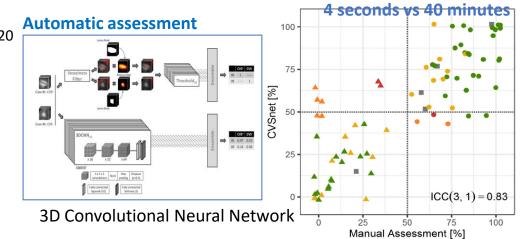
Figure 4. Combination of Cortical Lesions (CLs) and Central Vein Sign (CVS) for Discrimination Between Multiple Sclerosis/Clinically Isolated Syndrome and Other Diagnoses

Combination of CL count and CVS (AUC, 0.92; 95% CI, 0.90-0.94)
 CVS (AUC, 0.89; 95% CI, 0.86-0.91)
 CL count (AUC, 0.77; 95% CI, 0.75-0.80)

In MS differential diagnosis:

- The presence of CLs on 3T MRI images provided high specificity and low sensitivity
- The 40% CVS rule yielded high specificity and moderate
- sensitivity.
- **CVS and CLs** outperformed the presence of infratentorial, periventricular, and juxtacortical WMLs in supporting the differentiation between MS/CIS and non-MS conditions.

CVS and CLs, as assessed on dedicated MRI sequences, may be valuable tools to optimize the accuracy of MS diagnosis.


Central vein sign: assessment

Rating methods

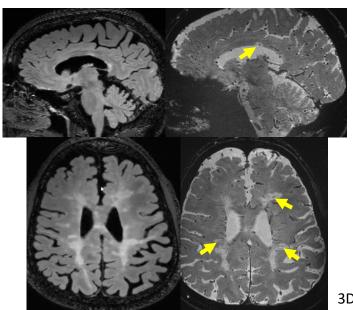
Maggi et al. NMR Biomed 2020

> 40% WML CVS positive:

- Time consuming (assess all lesions)
- High variability
- Automated tools

Select 3

- Patients with < 3 lesions excluded
- Positive if 3/3 are CVS+ OR 2/3 are CVS+


Select 3*

Simplified methods

- Patients with < 3 lesions excluded
- Evaluate if at least 3 lesions are CVS+

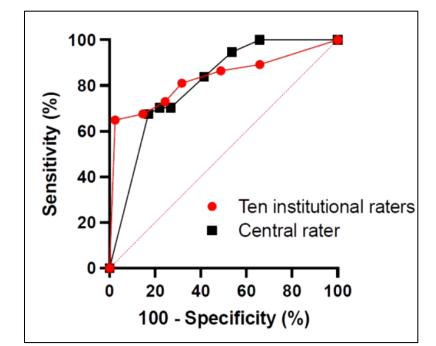
Rule of 6 / Select 6*

- Evaluate if at least 6 lesions are CVS+
- If <6 WM lesions, positive if CVS+ > CVS-
- Some studies: positive if 6/10 lesions are CVS+

3D EPI GRE with Gad

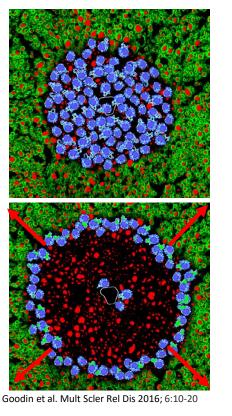
Simplified methods: validation

Select 3


- Patients with < 3 lesions excluded
- Positive if 3/3 are CVS+ OR 2/3 are CVS+
 Select 3*
- Patients with < 3 lesions excluded
- Evaluate if at least 3 lesions are CVS+

Rule of 6 / Select 6*

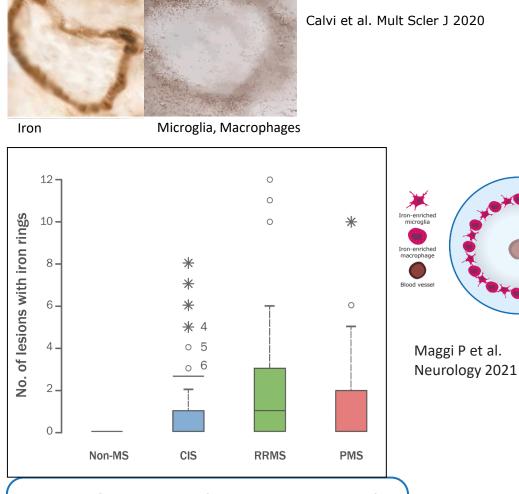
- Evaluate if at least 6 lesions are CVS+
- If <6 WM lesions, positive if CVS+ > CVS-
- Some studies: positive if 6/10 lesions are CVS+

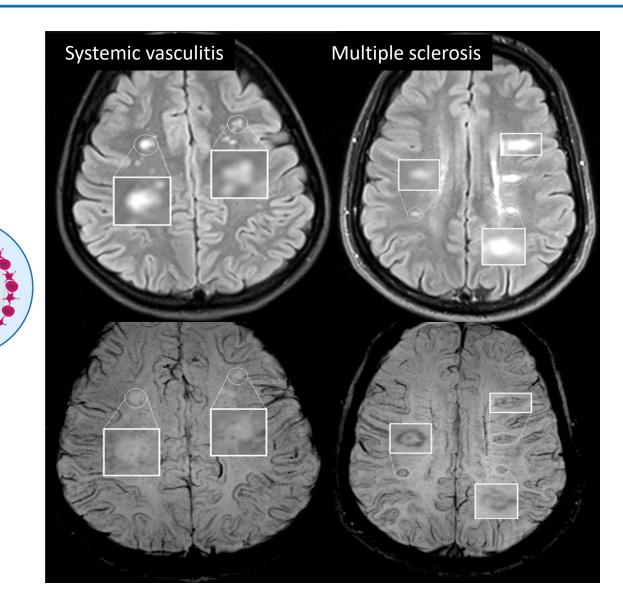

NAIMS group: N=78, 10 sites, T2*EPI

Method	Sensitivity	Specificity
40% Threshold	92%	75%
50% Threshold	89%	80%
Select-3*	81%	64%
Select-6*	65%	93%

Acute MS lesion: An early event in white matter demyelination is the entry of immune cells (blue) from the blood

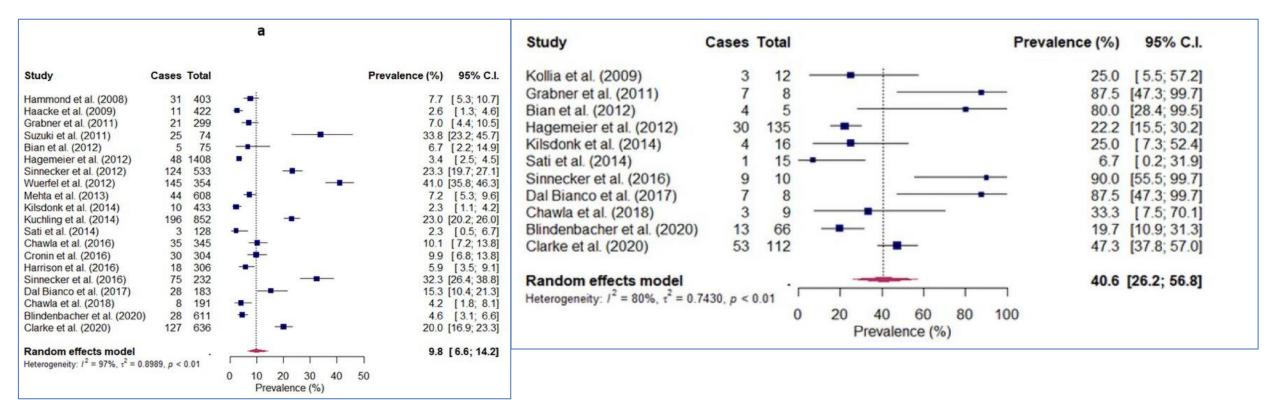
Chronic active MS lesion: With time, the immune cells disappear from the center of the MS lesion but remain at the border of the lesion where they slowly expand the area of demyelination




Baseline

6 months

Paramagnetic rim lesions (PRLs): MS versus other CNS disorders



 48% of CIS, 59% of RRMS and 39% of PMS patients had at least one lesion with an iron rim**

Paramagnetic rim lesions: Systematic review and Meta-analysis

29 studies comprising 1230 patients

- Pooled prevalences of **9.8%** and **40.6%** for rim lesions at lesion-level and patient-level
- Significant variation across studies
- Clear guidelines should be introduced to standardize their assessment

Association of Paramagnetic Rim Lesions with Disability

Rim Category:	No Detected Rims	1–3 Rims ≥4 Rims		Statistical Analysis ^a	
Demographic and Clinical Data					
No. (%)	84 (44)	66 (34)	42 (22)	NA	
Clinical phenotype, No. (%) CIS/RR SP PP	61 (73) 16 (19) 7 (8)	46 (70) 14 (21) 6 (9)	24 (57) 10 (24) 8 (19)	Fisher 2x3 <i>P</i> = 0.20, NS	
Sex, Female, No. (%)	59 (70)	45 (68)		Fisher 2x3 <i>P</i> = 0.90, NS	
Age, mean (SD), years	47.3 (14.5)	47.2 (11.4)	44.3 (11.1)	ANOVA <i>P</i> = 0.40, NS	
Disease duration, mean (SD), years	13.4 (12.5)	12.9 (9.9)	12.2 (8.3)	ANOVA $P = 0.80$, NS	
Patients never treated, No. (%)	27/84 (32)	11/66 (17)	5/42 (12)	Fisher 2x3 <i>P</i> = 0.01	
African American, No. (%)	10 (12)	12 (18)	10 (24)	Fisher 2x3 <i>P</i> = 0.20, NS	
HLA-DRB1*15:01, No. (%)	29/64 (45)	15/54 (28)	13/33 (41)	Fisher 2x3 <i>P</i> =0 .10, NS	
EDSS score, median (range)	1.5 (0-7.5)*	2 (0-8)&	3 (1-7.5)*&	ANOVA P =0 .002	
MSSS score, mean (SD)	3.0 (2.5)*	3.4 (2.5)&	4.9 (2.5) *&	ANOVA P < 0 .001	
PASAT score, mean (SD)	49.9 (8.6)*	48.4 (9.9)	44.6 (11.9)*	ANOVA <i>P</i> = 0.03	
SDMT score, mean (SD)	53.4 (12.3)*	48.3 (13.4)	43.7 (17.8)*	ANOVA <i>P</i> = 0.001	

a Statistical significance at P < 0.05 level in Bonferroni post hoc analysis is referred with symbols: * for the comparison No rim vs ≥4 rims rims group; & for the comparison 1–3 rims vs ≥4 rims group. CIS, clinically isolated syndrome; EDSS, Expanded Disability Status Scale; HLA, human leukocyte antigen; MSSS, MS Severity Score; NS, not significant; PASAT, Paced Auditory Serial Addition Test; PP, primary progressive; RR, relapsing-remitting; SDMT, Symbol Digit Modalities Test; SP, secondary progressive.

Modified from Absinta M et al. JAMA Neurol. doi:10.1001/jamaneurol.2019.2399.

- Over 50% of MS patients have at least one PRL
- WM rarefaction occurs at the paramagnetic lesion's edge
- Higher number of PRLs correlates with:
 - More aggressive disease
 - More severe cognitive decline and disability at a younger age
 - Lower brain volume

MS diagnosis: McDonald 2017 criteria

Dissemination in space (DIS)

- ≥1 T2 lesion* in 2 out of 4 regions of the CNS
 - Periventricular
 - Juxtacortical
 - Infratentorial
 - Spinal cord

CNS= central nervous system; Gd=gadolinium, CSF=cerebrospinal fluid

*Gd not needed for demonstration of DIS

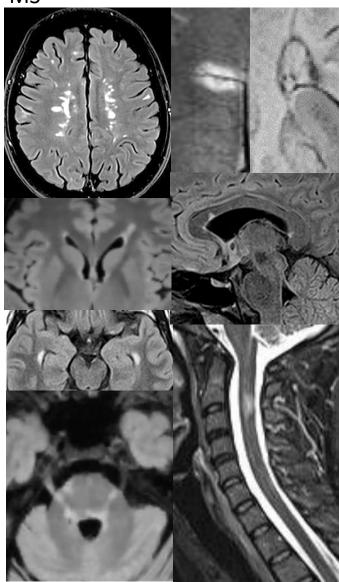
Dissemination in time (DIT)

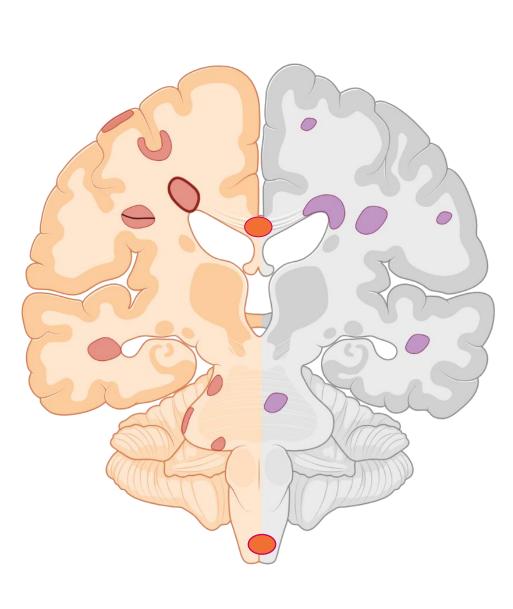
- Simultaneous presence of Gd+ and non-enhancing lesions at any time
- New T2 and/or Gd+ lesion on follow-up MRI
 - Compared to reference (baseline) MRI
- Demonstration of DIS and presence of CSF specific oligoclonal bands

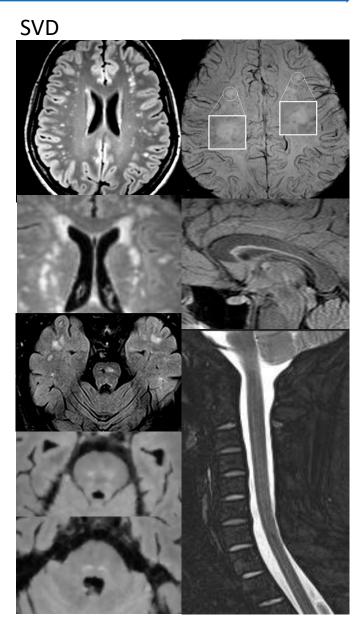
Proposed revisions

- **DIT** is not longer needed for diagnosis
- Need for paraclinical evidence to diagnose MS
- **Optic nerve** may serve as a fifth topography
- Updated DIS criteria
- Addition of CVS and PRLs as optional paraclinical tools for diagnosis in certain situations
- **RIS is MS** in specific situations
- More strict features for confirming diagnosis in individuals over 50 years, or with headache disorders (including migraine), or with vascular disorders
- Laboratory tests (anti-MOG ab) for confirming diagnosis in children and adolescents
- Additional imaging features for PPMS diagnosis
- kFLCs as another tool to support diagnosis

2023 McDonald Criteria Review 29 Nov-2 Dec 2023 Barcelona, ES


An Initiative of the International Advisory Committee on Clinical Trials in MS





Typical imaging features

MS

Summary

- Wide variety of causes may present with multifocal white matter lesions
- MRI is the preferred imaging technique for diagnostic workup
- Radiological interpretation with demographic, clinical history, and lab findings (work together radiologists and neurologists)
- Standardized brain (spinal cord) MRI protocol
- Comprehensive checklist for evaluation of white matter spots is crucial
- Spinal cord and susceptibility-based imaging (CVS, PRLs) improve diagnostic specificity