Presented by Alex Rovira on behalf of

Mike P Wattjes, Olga Ciccarelli, Daniel S Reich, Brenda Banwell, Nicola de Stefano, Christian Enzinger, Franz Fazekas, Massimo Filippi, Jette Frederiksen, Claudio Gasperini, Yael Hacohen, Ludwig Kappos, David K B Li, Kshitij Mankad, Xavier Montalban, Scott D Newsome, Jiwon Oh, Jacqueline Palace, Maria A Rocca, Jaume Sastre-Garriga, Mar Tintoré, Anthony Traboulsee, Hugo Vrenken, Tarek Yousry, Frederik Barkhof, Àlex Rovira on behalf of the Magnetic Resonance Imaging in Multiple Sclerosis study group, the Consortium of Multiple Sclerosis Centres, and North American Imaging in Multiple Sclerosis Cooperative MRI guidelines working group

Objective:

To present updated international consensus 2021 guidelines on MRI in MS, and which now merge recommendations from MAGNIMS, CMSC, and NAIMS.

- Two independent panels of experts convened on two occasions to update existing guidelines for a standardized MRI protocol.
- MAGNIMS panel convened in Graz, Austria in April 2019.
- CMSC/NAIMS panel met in Newark, NJ, USA in October 2019.
- Subsequently, the leadership of the MAGNIMS, NAIMS/CMSC working groups combined their efforts to reach an international consensus.

2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis

Mike P Wattjes, Olga Ciccarelli, Daniel S Reich, Brenda Banwell, Nicola de Stefano, Christian Enzinger, Franz Fazekas, Massimo Filippi, Jette Frederiksen, Claudio Gasperini, Yael Hacohen, Ludwig Kappos, David K B Li, Kshitij Mankad, Xavier Montalban, Scott D Newsome, Jiwon Oh, Jacqueline Palace, Maria A Rocca, Jaume Sastre-Garriga, Mar Tintoré, Anthony Traboulsee, Hugo Vrenken, Tarek Yousry, Frederik Barkhof, Àlex Rovira on behalf of the Magnetic Resonance Imaging in Multiple Sclerosis study group, the Consortium of Multiple Sclerosis Centres, and North American Imaging in Multiple Sclerosis Cooperative MRI guidelines working group*

NAIMS North American Imaging in MS Cooperative

	MRI PROTOCOLS	RI PROTOCOLS Brain		Optic Nerve	
	Field Strength	≥1.5 T (preferably 3T)	≥1.5 T (3T no added value)	<u>≥</u> 1.5 T	
	Acquisition 3D (preferred) or 2D		2D or 3D	2D or 3D	
	Slice Thickness3D: 1mm isotropic 12D: <a href="mailto: 2mm, no gap 2		Sagittal <u><</u> 3mm, no gap Axial <u><</u> 5mm, no gap	<u><</u> 2-3mm, no gap	
	In-Plane Resolution	In-Plane Resolution <a> <a> 		<u>≤</u> 1mm x 1mm	
	Coverage (include as much of cervical cord as possible)		Whole cord (cervical, thoracolumbar including conus)	Optic nerve & chiasm	
	Axial slice orientation		Perpendicular to sagittal axis of cord	Align to optic nerve/chiasm orientation	
T = Te I Isot	Tesla; 3D = three dimensional; 2D = 2 dimensional otropic preferred, if over-contiguous (through-plane and in-plane), not > 1.5 mm with 0.75 mm overlap		Magnims 🚓		

² Diffusion-weighted imaging, slice thickness should be \leq 5mm with a 10-30% slice gap

North American Imaging in MS Cooperative

M Wattjes et al. Lancet Neurol 2021

Brain Sequences	Diagnostic workup	Follow Up	Safety Monitoring	
Axial T ₂	Recommended	Recommended (Optional if 3D Flair acquired)	Recommended (Optional if 3D Flair acquired)	
Sagittal & Axial FLAIR	Recommended	Recommended	Recommended	
Post-Gd axial (or 3D sagittal) T ₁	Recommended	Optional	Optional	
Diffusion-weighted imaging	Optional	Optional (useful for differential Dx)	Recommended (for PML detection)	
DIR or PSIR	Optional (for cortical lesions)	Optional	Optional	
High-resolution 3D T ₁	Optional (for brain atrophy monitoring)	Optional	Not Required	
Susceptibility-weighted imaging	Optional (for central vein sign)	Not Required	Not Required	

T₂ (TSE/FSE, turbo/fast spin echo)

- Gd macrocyclic agent, 0.1mm/kg body weight, minimum delay 5-10 minutes
- T₁ (TSE/FSE)
- FLAIR (fluid-attenuated inversion recovery)

DIR (double inversion recovery) and PSIR (phase-sensitive inversion recovery)

High resolution 3D ${\rm T_1}$

(e.g.MP-RAGE, MP2RAGE magnetization-prepared rapid acquisition of gradient echoes; IR-SPGR, inversion-prepared spoiled gradient; TFE, turbo field-echo)

M Wattjes et al. Lancet Neurol 2021

Standardized MS protocol: 3T Basic protocol (total acq. time: 8 min 15 sec)

3D T2 FLAIR

Acq: 1.0 x 1.0 x 1.0 mm TR/TI/TE: 7000/2050/410 ms Time: 3:58 min

2D T2 double echo

Acq: 3 x 1 x 1 mm TR/TE: 3600/9.4- 94 ms Time: 2:02 min

2D EPI GR Acq: 3 x 1 x 1 mm TR/TE: 3000/63 ms Time: 2:13 min

Standardized MS protocol: 3T Optional sequences (total acq. time: 16 min 14 sec)

3D T1 MPRAGE

TR/TI/TE: 2300/900/2.98 ms Acq: 1.0 x 1.0 x 1.0 mm Time: 5.09 min

3D DIR SPACE

TR/TI/TE: 7500/3000/318 ms Acq: 1.0 x 1.0 x 1.0 mm Time: 4.38 min

3D SWI

TR/TE: 33/24,6 ms Acq: 1.0 x 1.0 x 1.0 mm Time: 3.30 min

2D GRE T1 with Gad

TR/TI/TE: 7500/3000/318 ms Acq: 3.0 x 1.0 x 1.0 mm Time: 2.57 min

Assessment of T2LL, new T2, and global / grey matter brain volume

SIEMENS

	SPie	NOT FOR CL	REPORT	V2_0_0	
Patient Demographics Relative Disease Burden					
			Total Lesion Volume (mL)	Brain Parenchymal Fraction (BPF)	
Age:	Sex: M		Moderate	Moderate	
Review			Mild	Mild	
Prior: 30-Jun	-2020 Current:	18-May-2021	28.62	0.837	

Morphometry

Brain Volume (normalized)

		Prior 30-Jun-2020	Current 18-May-2021	Change since prior (%)
BPF		0.839	0.837	-0.14
	GMF	0.455	0.448	-1.61
	WME	0 384	0.390	1 59

Gray Matter Structure Volume in mL [% of intracran. vol.]

	Prior	Current	Change
	30-Jun-2020	18-May-2021	since prior (%)
Deep GM	35.78 [2.60]	35.62 [2.58]	-0.44
Cortical GM	475.19 [34.48]	474.84 [34.42]	-0.07
Thalamus	11.79 [0.86]	12.04 [0.87]	2.05

42.0 42.5 43.0 43.5 Age

- On-line solution
- Friendly
- Quality control (validation required)
- License

Spinal cord atrophy in MS: automated measure

Spinal Cord Toolbox

Spinal Cord Sequences	Diagnostic workup	Follow Up	Safety Monitoring	
Sagittal at least 2 of T ₂ , PD or STIR	2 sequences Recommended	Optional	Not Required	
Sagittal 3D T ₁ (PSIR, MP- RAGE) cervical only	Optional (substitutes for one of above)	Optional	Not Required	
Axial T2 or T2*	Optional (through lesions)	Optional	Not Required	
Pre-Gd Sagittal T ₁	Optional	Optional	Not Required	
Post-Gd Sagittal T ₁	Recommended	Optional	Not Required	
Post-Gd axial T ₁	Optional	Optional	Not Required	

T₂ (TSE/FSE, turbo/fast spin echo)
 Gd macrocyclic agent, 0.1mm/kg body weight, minimum delay 5-10 minutes. No additional Gd needed if following Post-Gd brain examination
 T₁ (TSE/FSE)
 STIR (short tau inversion recovery)
 PD (proton-density, TSE/FSE)
 T₂* (T₂ gradient recalled echo)

North American Imaging in MS Cooperative

M Wattjes et al. Lancet Neurol 2021

Spinal cord MRI in monitoring treatment response?

Spinal cord MRI in monitoring and predicting treatment response

Adding spinal cord to brain MRI in the routine monitoring of clinically stable RRMS could reveal a significant proportion of disease activity otherwise undetected (weak evidence)

- Validation studies required
- Acquisition of spinal cord MRI increases the total scanning time
- Challenge Spinal cord lesions are prognostically important but difficult to
 - Absence didentify and quantify!!!
 - Good quality spinal cord MRI is technically challenging and time
 - consuming
 - Limits the value of spinal cord MRI for monitoring disease evolution in clinical practice

Spinal cord MRI in monitoring and predicting treatment response

- Routine spinal cord follow-up MRI <u>cannot yet be recommended</u> unless:
 - Significant clinical activity/worsening with no/few changes on brain MRI
 - Spinal cord relapse if detection of (new) lesions could affect treatment decisions
 - Patients with a predominant spinal cord MS phenotype (MRI)
 - Rule out alternative cause for progressive myelopathy

Optic Nerve Sequences	Diagnostic workup	Follow Up	Safety Monitoring
Axial & Coronal fat- suppressed T ₂ or STIR	Optional	Not Required	Not Required
Post-Gd Axial & Coronal fat- suppressed T ₁	Optional	Not Required	Not Required

T ₂ (TSE/FSE, turbo/fast spin echo)
Gd macrocyclic agent, 0.1mm/kg body weight, minimum delay 5-10 minutes. No additional Gd
needed if following a Post-Gd brain examination
T ₁ (TSE/FSE)
STIR (short tau inversion recovery)

Optic nerve lesion detection by test (MRI)

Dr A Vidal Jordana

An **abnormal optic nerve MRI** was defined by the presence of a T2 hypersignal in the optic nerve (coronal T2 FS sequence)

114 / 157 patients (72.6%) with	n optic nerve MRI performed
---------------------------------	-----------------------------

(mean time from CIS to MRI 2.9 months, SD 2.6)

	Whole cohort	ON-CIS	Non-ON CIS	P-value
	(n=112) ^a	(n=55)	(n=57)	(ON vs non-ON)
Optic nerve lesion	45 (40.2)	40 (72.7)	5 (8.8)	<0.001

^a Optic nerve sequence of suboptimal quality in n=2 patients

MRI in Optic Neuritis

• **3D DIR** outperforms 2D STIR for detecting optic nerve lesions

a b b c c c c c c c c c c c c c c c c c	R		Hodel et al.	Eur Radiol 2014
Sold Startes Startes		2D STIR FLAIR	DIR 2D coronal reformat	3D DIR MPR
	True positives	37	39	42
	True negatives	16	17	17
	False positives	2	1	1
	False negatives	7	5	2
	Sensitivity	0.84 (0.71-0.97)	0.88 (0.78-1)	0.95 (0.89-1)
	Specificity	0.89 (0.74-1)	0.94 (0.84-1)	0.94 (0.84-1)

•3D DIR detects signal changes in 38% of asymptomatic nerves in CIS patients
•3D DIR signal changes highly specific for optic nerve pathology (more sensitive than VEPs)

MRI in Optic Neuritis: sequences

3D DIR fs

20.10.2021

31.08.2022

3D Double Inversion Recovery (DIR): one-step sequence?

3D DIR Extended FOV

MPR

MRI timing

• Disease activity within the first weeks/months after treatment initiation not related to treatment failure:

- Residual disease activity can reflect a delay in the treatment response
- Timing of the **rebaseline MRI** based on the pharmacodynamics of DMT (allow sufficient time for drug to start working, usually 3–6 months)
- New T2 lesions are preceded by non-visible pathological changes already present before treatment initiation

MRI timing

55-year-old woman CIS March 2018 (polyregional)

Pre-treatment

Follow-up 9 months

MRI timing

55-year-old woman CIS March 2018 (polyregional)

MRI timing in monitoring MS

Initial	Re-Baseline	First follow up ^{a,b}	Second follow up ^{a,b}	Follow ups ^{a,b}
Pre-treatment ^c	3–6 months after	12 months after	24 months after	Every year while on
	treatment onset ^d	treatment onset	treatment onset	treatment ^e
Gd recommended	Gd usually not required ^f	Gd optional	Gd optional	Gd optional
Assess prognostic markers	Reference scan	Assess active lesions	Assess active lesions	Assess active lesions

DMT, disease-modifying treatment; GA, glatiramer acetate; IFN, interferon; Gd, gadolinium

- ^a Shorter follow-up MRI (6 months) if isolated significantly MRI activity or isolated clinical activity
- ^b Add spinal cord MRI to brain MRI if clinically indicated (see box 3)
- ^c Add spinal cord MRI to brain MRI if never performed;
- ^d Longer intervals to be considered in patients treated with certain DMTs (up to 9 months with glatiramer acetate, and until completion of the full initial courses with induction therapies)
- ^e Less frequent MRIs in clinically stable patients treated with IFN or GA
- ^f Consider Gd administration in patients with highly active disease at baseline or in patients with unexpected clinical activity after treatment initiation

Wattjes, Rovira. Lancet Neurol 2021

Serial routine assessment of activity at "clinical" intervals (yearly)

Summary on the use of DMDs in Multiple sclerosis

- Predominant anti-inflammatory effect (Gad and new T2 lesions)
- Increasing use of medium to high-efficacy DMDs (60% at Vall d'Hebron Hospital)
- Majority of patients (>93%) show <u>NO</u> Gad-enhancing lesions on routine follow-up (one year)

- Is cost-effective using GBCAs in routine MRI monitoring?
- Is safe the repetitive injection of GBCAs?

European Commission decision on use of Gd

- Use Gd only if essential; minimise repetitive Gd imaging when possible
- Use Gd at lowest dose needed
- Only macrocyclic agents for CNS studies

European Medicines Agency, https://www.ema.europa.eu/en/medicines/human/referrals/gadolinium-containing-contrast-agents (accessed 5 November 2019).

Despite lack of evidence of the clinical effects (in subjects with normal renal function) we must take special caution in patients at higher risk:

- Patients requiring multiple lifetime doses
- Patients with inflammatory conditions (likely increase Gad deposition)
 - Children, MS, inflammatory bowel disease

Use of GBCAs should be reduced!!!

Serial routine assessment of activity at "clinical" intervals (yearly): only T2?

Recommendations for the use of GBCAs (monitoring)

Clinical situation	Indication and objective
Monitoring	The use of gadolinium is not recommended
	 In case of routine monitoring MRIs in patients without anticipated disease activity For PML screening
	<image/>
	M Wattjes et al Lancet Neurol 2021

Activity based on new 2 lesions

Recommendations for the use of GBCAs (monitoring)

Clinical situation	Indication and objective
Monitoring	 The use of gadolinium is recommended To confirm clinical suspicion of current disease activity is required (MRI should be performed as soon as possible and before steroid treatment), mainly in patients with diffuse and confluent chronic MS lesions If presence of Gad-enhancing lesion is required to initiate a specific DMD To detect subclinical activity in patients without a recent reference scan In the first years (2) in patients receiving low-efficacy DMDs (even if clinically stable) M Wattjes et al Lancet Neurol 2021
	If detection of gadolinium-enhancing lesions could influence treatment decisions (e.g., prompt a switch to a higher efficacy DMT, lack of adherence).

Active (new/enlarging) T2 lesion counts are routinely used for Assessment of disease activity in Multiple Sclerosis

resident

•Confluent non-active lesions

Erbayat Altay E et al. JAMA Neurol 2013;70:338-344.

programme

practitioner

A supervised approach based on the application of a CNN trained to detect the presence of AT (CNN) plus visual validation under normal reporting conditions AT (CNN) plus visual validation under normal reporting conditions

Same scanner	(3T) and sar	ne sequence	2		
	V1	V2	A1	A2	V1A2
New T2 lesions	59	73	125	119	89
False negatives	47*	31*	27*	17*	15*
True positives	56*	69*	77*	87*	89*
False positives	3*	3*	48*	32*	0*
	54.37	69.31	74.04	83.65	85.58
Sensitivity (CI)	(44.26-64.22)	(58.97-77.87)	(64.52-82.14)	(75.12-90.18)	(77.33-91.70)
	52.83	67.31	50.66	63.97	NA
Accuracy (CI)	(42.89-62.60)	(57.41-76.19)	(42.44-58.85)	(55.30-72.02)	

Rovira et al. Mult Scler J 2021

Key messages 1

- Evidence based international consensus recommendations
- Useful for diagnosis, prognosis, and disease monitoring
- Harmonize recommendations from European and North American experts
- MRI protocols are simplified, making them easy to use in clinical practice
- Addresses current limitations of newer sequences diagnosis and quantitative measures for monitoring

Key messages 2

- 3D-FLAIR brain MRI most important for diagnosis and monitoring
- Gadolinium used restricted to diagnosis and early monitoring
- Spinal cord MRI important for diagnosis and prognosis; dual contrast
- Re-baseline brain MRI after switching treatment (no gadolinium)
- Annual brain MRI while on treatment
- PML monitoring every 3-4 months with abbreviated protocol
- Central vein sign, cortical lesions, brain volume change quantification not yet recommended

The 2021 international recommendations on the use of MRI in multiple sclerosis for diagnostic and monitoring purposes MUST be implemented in ALL our MRI studies

M Wattjes et al. Lancet Neurol 2021

J- Universitätsspital Basel

University Hospital Basel – Basel, Switzerland

UCL Institute of Neurology / Queen Square – London, UK

San Raffaele Scientifica Institute / Vita-Salute San Raffaele University – Milano, Italy

Oxford University – Oxford, UK

San Camilo – Forlanini Hospital – Roma, Italy

and the second se

University of Siena – Siena, Italy

NAIMS North American Imaging in MS Cooperative

PROTOCOLO RM ESTANDARIZADO ESCLEROSIS MÚLTIPLE 2021 MAGNIMS-CMSC-NAIMS

NAIMS

North American Imaging in MS Cooperative

Lancet Neurology 20: 653-670, 2021

	CEREBRO	MÉDULA ESPINAL	NERVIO ÓPTICO
CAMPO Magnético	\geq 1,5 T (preferible 3T)	≥1,5 T	≥1,5 T
ADQUISICIÓN	3D (preferible) o 2D	2D o 3D	2D o 3D
GROSOR CORTE	3D: 1mm isotrópico¹ 2D: ≤3mm, sin gap²	Sagital ≤3mm, sin gap Axial ≤5mm, sin gap	≤2-3mm, sin gap
RESOLUCIÓN EN Plano	≤1mm x 1mm	≤1mm x 1mm	≤1mm x 1mm
COBERTURA	Cerebral completa (incluyendo el segmento proximal de la médula cervical)	Médula completa (cervical, toracolumbar incluyendo el cono)	Nervio y quiasma ópticos
ORIENTACIÓN CORTES AXIALES (adquisición 2D o reconstrucción 3D)	Plano subcalloso	Perpendicular al eje sagital de la médula	Alineado a la orientación del nervio/ quiasma óptico

T = tesla; 3D = 3 dimensiones; 2D = 2 dimensiones

¹ Preferible isotrópico; si sobre contiguo (a través de plano y en plano), no ≥ 1,5 mm con 0,75 mm superposición

² Imagen de difusión (DWI): grosor de corte \leq 5mm con un gap entre cortes no superior a 10-30%

Download and order copies from www.mscare.org/MRI

9/22/2022 9:17:12 AM

Cerebro	Dx	Mon	Seg
Axial T ₂		±	±
Sagital & axial FLAIR (o 3D)			
Post-Gd axial (o 3D) T ₁			
Imagen de difusión (DWI)		DDx	
DIR o PSIR			
3D T, alta resolución (medición volumen cerebral)			
Susceptibilidad magnética (SWI)			
Nervio óptico	Dx	Mon	Seg
Axial & coronal T ₂ con supresión grasa o STIR			
Post-Gd ³ axial coronal T ₁ con supresión grasa			
Médula espinal	Dx	Mon	Seg
Sagital al menos 2: T ₂ , DP o STIR			
Sagital 3D T ₁ (PSIR, MPRAGE) ⁴ sólo cervical			
Axial $T_2 \circ T_2^*$			
Pre-Gd Sagital T ₁			
Post-Gd ³ Sagital T ₁			
Post-Gd ³ axial T ₁			
Recomendado Opcional	No s	e requier	9

Dx Diagnóstico de EM Mon Monitorización de actividad de la enfermedad y efectividad del tratamiento nodificador de la enfermedad (DMT) Seg Monitorización seguridad para DMT p.e, lespistaje de leucoencefalopatía multifocal progresiva (LMP) en pacientes de riesgo

T₂ (TSE/FSE, turbo/fast spin echo)
 ± Axial T₂ opcional si 3D FLAIR con
 reconstrucciones sagital/axial están disponibles
 Gd agente macrocíclico, 0,1mm/kg peso,
 retraso mínimo 5-10 minutos
 T₁ (TSE/FSE)
 DDx para diagnóstico diferencial
 FLAIR (fluid-attenuated inversion recovery),
 con supresión grasa opcional
 DIR (double inversion recovery)
 PSIR (phase-sensitive inversion recovery)
 3D T₁ alta resolución (e.g. MPRAGE/
 MP2RAGE magnetization-prepared rapid acquisition of gradient echoes; IR-SPGR,

nversion recovery prepared spoiled gradient; FE, turbo field-echo)

STIR (short tau inversion recovery) **DP** (densidad protónica, TSE/FSE) **T**₂* (T₂ eco de gradiente)

³ No se requiere nueva inyección de Gd si se obtiene inmediatamente tras el estudio cerebral ⁴ Puede substituir una de las siguientes: T₂, PD o STIR

What's relevant for your clinical practice?

- A standardized MRI acquisition is essential for both qualitative and quantitative assessment of MRI scans (clinical and research)
- Quantitative measures provide added value to standard qualitative assessments
- Several limitations exist to implement automated tools in clinical practice
- Solutions to these limitations are progressively incorporated

Samen kiezen voor beter VU University Medical Centre – Amsterdam, Netherlands

UCL Institute of Neurology / Queen Square – London, UK Vall d'Hebron Hospital Vall d'Hebron University Hospital – Barcelona, Catalonia

San Raffaele Scientifica Institute /

Vita-Salute San Raffaele University -

Milano, Italy

OSPEDALE SAN RAFFAELE

UniSR

University Hospital Basel – Basel, Switzerland

Oxford University – Oxford, UK

Med Uni

Graz

Medical University Graz - Graz,

Austria

San Camilo – Forlanini Hospital – Roma, Italy

University of Siena – Siena, Italy

Gad deposition in CNS

First study that correlated high SI in DN and GP with administration of GBCAs (linear). No clinical data

High Signal Intensity in the Dentate Nucleus and Globus Pallidus on Unenhanced T1-weighted MR Images: Relationship with Increasing Cumulative Dose of a Gadoliniumbased Contrast Material¹

Kanda et al. Radiology 2014

Design

- single center
- retrospective
- 19 patients
- normal liver and renal function
- no prior RT

Recommendations for the use of GBCAs (monitoring)

Clinical situation Indication and objective The use of gadolinium is recommended Monitoring To confirm clinical suspicion of current disease activity is required (MRI should be performed as • soon as possible and before steroid treatment), mainly in patients with diffuse and confluent chronic MS lesions Reference scan Suspected recent clinical activity Hospital Vall d'Hebron

MRI in Optic Neuritis: sequences

Recommendations for the use of GBCAs (monitoring)

Clinical situation Indication and objective The use of gadolinium is recommended Monitoring To confirm clinical suspicion of current disease activity is required (MRI should be performed as • soon as possible and before steroid treatment), mainly in patients with diffuse and confluent chronic MS lesions Automated co-registration and lesion color-coding (MSPie, Siemens) Reference Follow-up Hospital Vall d'Hebron

M Wattjes et al Lancet Neurol 2021

Timing for follow up MRI - Adults	Brain	Spinal Cord
Clinically Isolated Syndrome	Every 6-12 months To detect new disease activity	Not recommended
Radiologic Isolated Syndrome	Every 6-12 months	Not recommended
RRMS on treatment	Pretreatment (Gd recommended) 3-6 months post start (new baseline) Annually while on treatment	Disability worsening not explained by brain MRI
High risk for PML (JCV <u>></u> 0.9 on natalizumab <u>></u> 18months)	Every 3-4 months (abbreviated protocol) During treatment and for 9-12 months post switch	Not recommended

Spinal cord atrophy in MS: automated measure

Spinal cord MRI in monitoring and predicting treatment response Against

- Spinal MRI shows considerably fewer new lesions than brain MRI
- A relationship exists between development of new brain lesions and spinal cord lesions
- Most are symptomatic
- Serial spinal cord MRI may add little to brain MRI alone in monitoring disease activity and progression

Baseline

1 year follow-up

FLAIR, fluid-attenuated inversion recovery; MRI, magnetic resonance imaging; STIR, short-TI inversion recovery.

Thorpe JW et al. Neurology. 1996;46:373–78; Images provided by Dr Rovira.

Spinal cord MRI in monitoring and predicting treatment response In favour

- 103 RRMS patients: clinically stable
- Median interval between scans: 17 months
- New asymptomatic lesions

- 43.7% brain
- 25.2% spinal cord
- 9.8% only asymptomatic SC lesions

- Significant proportion of disease activity only in the SC
- Could have important implications in assessing and predicting treatment response^{*}

PD, proton density; RRMS, relapsing-remitting MS; SC, spinal cord; STIR, short-TI inversion recovery.

* Represents the speaker's own view.

Zecca et al. Mult Scler J. 2016;6:782–91; Images courtesy of A. Rovira.

1 year follow-up

Baseline

1 year follow-up

Gadolinium deposition (2014-2018)

Linear

Macrocyclic

Table 1. ECF MRI Contrast Agents That Have Been Used in the Clinic ECF agent (trade name) ECF agent (chemical code) ECF agent (generic name) approval date Dotarem, Clariscan Gd-DOTA gadoterate meglumine 1989 (Europe) ProHance Gd-HPDO3A gadoteridol 1992 Gadovist (Europe) Gd-DOTA gadoteridol 1992 Gadovist (Europe) Gd-DO3A-butrol gadoturol 1998 (Europe) Gadavist (United States) 2011 (United States) 2011 (United States) Magnevist ^a Gd-DTPA gadopentetate dimeglumine 1988 Omniscan ^a Gd-DTPA-BMA gadoversetamide 1993 Optimark ^a Gd-DTPA-BMEA gadoversetamide 1999 Multihance ^{b,c} Gd-BOPTA gadobenate dimeglumine 204					
ECF agent (trade name)ECF agent (chemical code)ECF agent (generic name)approval dateDotarem, ClariscanGd-DOTAgadoterate meglumine1989 (Europe) 2013 (United States)ProHanceGd-HPDO3Agadoteridol1992Gadovist (Europe)Gd-DOTA-butrolgadobutrol1998 (Europe) 2011 (United States)Gadavist (United States)2011 (United States)2011 (United States)Magnevist ^{ar} Gd-DTPAgadopentetate dimeglumine1988Omniscan ^{ar} Gd-DTPA-BMAgadoversetamide1993Optimark ^a Gd-DTPA-BMEAgadoversetamide1999Multihance ^{b,c} Gd-BOPTAgadobenate dimeglumine2004	1	Table 1. ECF MRI Contrast A	gents That Have Been Used in t	he Clinic	
Dotarem, ClariscanGd-DOTAgadoterate meglumine1989 (Europe) 2013 (United States)ProHanceGd-HPDO3Agadoteridol1992Gadovist (Europe)Gd-DO3A-butrolgadobutrol1998 (Europe) 2011 (United States)Gadavist (United States)Gd-DTPAgadopentetate dimeglumine1988Magnevist ^{ar} Gd-DTPA-BMAgadoteridel miglumine1993Optimark ^{ar} Gd-DTPA-BMEAgadoversetamide1999Multihance ^{b,c} Gd-BOPTAgadobenate dimeglumine2004		ECF agent (trade name)	ECF agent (chemical code)	ECF agent (generic name)	approval date
ProHance Gd-HPDO3A gadoteridol 1992 Gadovist (Europe) Gd-DO3A-butrol gadobutrol 1998 (Europe) Gadavist (United States) 2011 (United States) 2011 (United States) Magnevist ^{ar} Gd-DTPA gadopentetate dimeglumine 1988 Omniscan ^{ar} Gd-DTPA-BMA gadoversetamide 1993 Optimark ^{ar} Gd-DTPA-BMEA gadoversetamide 1999 Multihance ^b c Gd-BOPTA gadobenate dimeglumine 2004		Dotarem, Clariscan	Gd-DOTA	gadoterate meglumine	1989 (Europe)
ProHanceGd-HPDO3Agadoteridol1992Gadovist (Europe)Gd-DO3A-butrolgadobutrol1998 (Europe)Gadavist (United States)2011 (United States)2011 (United States)Magnevist ^{ar} Gd-DTPAgadopentetate dimeglumine1988Omniscan ^{ar} Gd-DTPA-BMAgadoversetamide1993Optimark ^{ar} Gd-DTPA-BMEAgadoversetamide1999Multihance ^b cGd-BOPTAgadobenate dimeglumine2004					2013 (United States)
Gadovist (Europe)Gd-DO3A-butrolgadobutrol1998 (Europe) 2011 (United States)Gadavist (United States)2011 (United States)2011 (United States)Magnevist ^{ar} Gd-DTPAgadopentetate dimeglumine1988Omniscan ^{ar} Gd-DTPA-BMAgadodiamide1993Optimark ^{ar} Gd-DTPA-BMEAgadoversetamide1999Multihance ^b cGd-BOPTAgadobenate dimeglumine2004		ProHance	Gd-HPDO3A	gadoteridol	1992
Gadavist (United States)2011 (United States)Magnevist ^{ar} Gd-DTPAgadopentetate dimeglumine1988Omniscan ^{ar} Gd-DTPA-BMAgadodiamide1993Optimark ^{ar} Gd-DTPA-BMEAgadoversetamide1999Multihance ^{b,c} Gd-BOPTAgadobenate dimeglumine2004		Gadovist (Europe)	Gd-DO3A-butrol	gadobutrol	1998 (Europe)
Magnevist ^a Gd-DTPAgadopentetate dimeglumine1988Omniscan ^a Gd-DTPA-BMAgadodiamide1993Optimark ^a Gd-DTPA-BMEAgadoversetamide1999Multihance ^{b,c} Gd-BOPTAgadobenate dimeglumine2004		Gadavist (United States)			2011 (United States)
Omniscan"Gd-DTPA-BMAgadodiamide1993Optimark"Gd-DTPA-BMEAgadoversetamide1999Multihance ^{b,c} Gd-BOPTAgadobenate dimeglumine2004		Magnevist ^a	Gd-DTPA	gadopentetate dimeglumine	1988
Optimark ^a Gd-DTPA-BMEAgadoversetamide1999Multihance ^{b,c} Gd-BOPTAgadobenate dimeglumine2004		Omniscan ^a	Gd-DTPA-BMA	gadodiamide	1993
Multihance ^{b,c} Gd-BOPTA gadobenate dimeglumine 2004		Optimark ^a	Gd-DTPA-BMEA	gadoversetamide	1999
		Multihance ^{b,c}	Gd-BOPTA	gadobenate dimeglumine	2004

"Agents suspended by the European Medicines Agency in 2017. ^bAgent available for limited, liver-specific indications in the EU. ^cMultipurpose agent that is also suitable for liver imaging.¹⁴

Wahsner et al. Chem Rev 2019

- Higher degree of gadolinium deposition with linear compounds versus macrocyclic
- Macrocyclic agents have higher thermodynamic, kinetic and conditional stability

					Lincar		Lingar		Macro	audic	Magroguelia
				Chemical	Lineur		Lineur		New	lenie	Mucrocyclic
				Structure	Non-Ionic		Ionic		Non-	Ionic	Ionic
				Molecule	gadodiamide	gadopentetate	gadobenate	gadoxetate	gadoteridol	gadobutrol	gadoterate
	4.13		v	M 1 . 1	0	dimeglumine	dimeglumine	disodium	Duellenee	Cadaviat	meglumine
	Autnors	Journal	Year 2014	Marketed as	Omniscan	Magnevist	мишнипсе	Primovist	ргоналсе	Gaaovist	Dotarem
	Erranto	Invest Padial	2014	*1							
	Kanda	Padialagy	2014	12							
	Quattrocchi	Invest Radiol	2015	#4							
	Radbruch	Radiology	2015	#5							
	Miller	Pediatrics	2015	#6							
	Ramalho	Radiology	2015	#7							
	Stojanov	Eur Radiol	2015	#8							
	Adin	AINR	2015	#9							
	McDonald	Radiology	2015	#10							
	Weberling	Invest Radiol	2015	#11							
	Radbruch	Invest Radiol	2015	#12							
se	Cao	AJR	2016	#13							
00	Ramalho	Eur Radiol	2016	#14							
_	Ramalho	AJNR	2016	#15							
	Tedeschi	Eur Radiol	2016	#16							
	Roberts	AJNR	2016	#17							
	Tanaka	Eur Neurol	2016	#18							
	Cao	Invest Radiol	2016	#19							
	Hu	Pediatric Radiol	2016	#20							
	Roberts	Brain Develop	2016	#21							
	Khant	Magn Reson Med Sci	2016	#22							
	Eisele	Medicine	2016	#23							
	Radbruch	Invest Radiol	2016	#24							
	Zhang	Radiology	2017	#25							
	Eisele	JNNP	2017	#26							
	Schlemm	Mult Scler	2017	<i>\$</i> 27							
	Radbruch	Radiology	2017	#28							
	Kuno	Radiology	2017	#29							
	Bae	Eur Radiol	2017	#30							
	Radbruch	Radiology	2017	#31							
	Flood	Radiology	2017	#32							
	Langner	Eur Radiol	2017	#33							4
	Kahn	Radiology	2017	#34							
	Ichikawa	Invest Radiol	2017	#35							
	Conte	Eur Radiol	2017	#36							
	Tedeschi	Magn Reson Med Sci	2017	#37							
	Espagnet	Ped Radioi	2017	#38						-	
	Forsiin	AJNK	2017	#39							
	Roberts Caluacidan	Neurology	2017	#40							
	Schneider	AJNK I Nouroimaging	2017	P41 #4.2	<u> </u>						
	Tibuscolt	J iveuroimaging	2017	#42 #42							
	1 iDUSSEK Splandiani	Radiol mod	2017	##13 #4.1							
	Spiendiani	Rautor meu	2017	#14 #45		+					
	Rigmond	Padialagy	2017	#43 #46							
	Voo	Invest Radiol	2017	#47							
	Muller	Clin Neuroradiol	2017	#48							
	Kromrev	Eur Radiol	2017	#49		1					
	Renz	Invest Radiol	2018	#50							
	Lee	Plos One	2017	#51							
		1		-		1	1		1		

Automated co-registration and lesion color-coding (MSPie, Siemens)

Images from Alex Rovira, Hospital Vall d'Hebron

	A LD.I. Cer DC
AS FATHE lenge t-valuefus	Ac REPORT V2_0_0 LINICAL USE
Patient Demographics	Relative Disease Burden
Age: Sex: F	Total Lesion Brain Parenchymal Volume (mL) Fraction (BPF) Moderate Moderate
Review	Mild Severe Mild Severe
Prior: 03-Dec-2020 Current: 07-Jun-2021	40.96 0.818
Brain segmentation: ACCEPTED Lesion segmentation: ACCEPTED	New or Enlarged Lesions: 1 BPF Change Since Prior: -0.50%

T2 Lesions Metrics

T2 Lesion Volume ((mL)					
	Prior	Current	Change		T2 Lesion	Volume
	03-Dec-2020	07-Jun-2021	since prior (%)	46		
Total	40.74	40.96	0.54	-		
Juxtacortical	0.92	1.01	9.62	7 44		
Periventricular	39.70	39.81	0.27	5		
Infratentorial	0.01	0.01	6.25	Ĕ 42		1011 Sta
Others	0.10	0.13	23.53	Aolu	0.74	40.96
T2 Lesion Fraction	(lesion volu	me / brain v	olume, %)	5 40		
T2 lesion fraction	3.71	3.77		res		
New/Enlarged T2 L	esions Sinc	e Prior		86 ga		-
		Count	Volume(mL)	P 26		10
Total		1	0.022	50 [
# Lesions <	0.003mL	0	0	03-Dec-	2020	07-Jun-2021
# Lesions >=	0.003mL	1	0.022		Acquisiti	on Date

2

Morphometry

Brain Volume (normalized)

	Prior	Current	Change
	03-Dec-2020	07-Jun-2021	since prior (%)
BPF	0.822	0.818	-0.50
GMF	0.477	0.473	-0.93
WMF	0.345	0.345	0.08
o		a in ml f0/ of i	intracran wal 1
Gray Matter S	structure volum	e in mL [% of i	intracran. vol.j
Gray Matter S	Prior	Current	Change
Gray Matter S	Prior 03-Dec-2020	Current 07-Jun-2021	Change since prior (%)
Gray Matter S	Prior 03-Dec-2020 33.43 [2.31]	Current 07-Jun-2021 33.37 [2.29]	Change since prior (%) -0.17
Deep GM Cortical GM	Prior 03-Dec-2020 33.43 [2.31] 461.77 [31.89]	Current 07-Jun-2021 33.37 [2.29] 451.32 [31.04]	Change since prior (%) -0.17 -2.26

pr: 1.00 mm

ResearchOnly_MS-P_ACCEPTED