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Imaging biomarker

In medicine, an imaging biomarker is a feature of an image relevant
to a patient's diagnosis. For example, a lesion in the lung detected
by imaging can lead to the suspicion of a neoplasm. The lesion
itself serves as a biomarker, but the minute details of the lesion
serve as biomarkers as well. Some of the imaging biomarkers used
in lung nodule assessment include size, spiculation, calcification,
cavitation, location within the lung, rate of growth, and rate of
metabolism. Spiculation increases the probability of the lesion
being cancer. A slow rate of growth indicates benignity. These
variables can be added to the patient's history, physical exam,
laboratory tests, and pathology to reach a proposed diagnosis.


https://en.wikipedia.org/wiki/Spiculation

Radiomics: Images Are More than
Pictures, They Are Data’

>
1))
2
®
3
S
aw

Robert J. Gillies, PhD
Paul E. Kinahan, PhD
Hedvig Hricak, MD, PhD, Dr(hc)

o
=
T
=
=
e
=
m
wn
=
=
o
=
N
»
n-)
m
T
>
F
=
m
o
=]
=
=

In the past decade, the field of medical image analysis has
grown exponentially, with an increased number of pattern
recognition tools and an increase in data set sizes. These
advances have facilitated the development of processes for
high-throughput extraction of quantitative features that
result in the conversion of images into mineable data and
the subsequent analysis of these data for decision support;
this practice is termed radiomics. This is in contrast to the

traditional practice of treating medical images as pictures
intended solely for visual interpretation. Radiomic data
contain first-, second-, and higher-order statistics. These
data are combined with other patient data and are mined
with sophisticated bioinformatics tools to develop models
that may potentially improve diagnostic, prognostic, and
predictive accuracy. Because radiomics analyses are in-
tended to be conducted with standard of care images, it is
conceivable that conversion of digital images to mineable
data will eventually become routine practice. This report
describes the process of radiomics, its challenges, and its
potential power to facilitate better clinical decision mak-
ing, particularly in the care of patients with cancer.
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DEEP TROUBLE

FOR DEEP

LEARNING

BY DOUGLAS HEAVEN

ARTIFICIAL-INTELLIGENCE
RESEARCHERS ARE TRYING TO FIX
THE FLAWS OF NEURAL NETWORKS.

self-driving car approaches a stop sign, but instead
of slowing down, it accelerates into the busy inter-
section. An accident report later reveals that four
small rectangles had been stuck to the face of the
sign. These fooled the car’s onboard artificial intel-
ligence (AI) into misreading the word ‘stop’ as ‘speed limit 45,

Such an event hasn'tactually happened, but the potential for
sabotaging Al is very real. Researchers have already demonstrated
how to fool an Al system into misreadinga stop sign, by carefully
positioning stickers on it'". They have deceived facial-recognition
systems by sticking a printed pattern on glasses or hats. And they
have tricked speech-recognition systems into hearing phantom
phrases by inserting patterns of white noise in the audio.

These are just some examples of how easy it is to break the lead-
ing pattern-recognition technology in AI, known as deep neural
networks (DNNs). These have proved incredibly successful at cor-
rectly classifying all kinds of input, including images, speech and
data on consumer preferences. They are part of daily life, running
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We obtained 43 imaging measures:
Morphological parameters Textural parameters

- Total tumor volume - Co-occurence matrices
- CE volume - Run-length matrices

- Necrotic volume - Spatial p-energies

- 3D tumor diameter

- CE rim width

- Surface regularity



4 outstanding parameters

1. Age
2. CE volume
3. CE rim width

4. Surface regularity



4 outstanding parameters

—

| DiSCO\‘/ery cohért-SurI‘éce regu‘larity | | E
1 . Age 0.9 P = 0.001
0.8
§O.7
2. CE volume S 05
.GZJ 05 3.48 mo
_ , S04
3. CE rim width Soa
0.2 -Surface regularity Surface regularity < 0.629
4 S f | . o (>O.165269) (n=155)
. ourrace regularity NS ———— |
OO 1‘0 2‘0 “ 3‘0 4‘0 5‘0 6:0 7;OI 80

Survival [months]



it

Now, all together!

Surface
regularity

Linear human knowledge-based methods

Optimized Linear Predictive Model (OLPM)

OLPM = 0.030 - age - 0.340 - CE rim width - 1.100 - Surface regularity + 0.012 - CE volume



5 different approaches

Machine learning-based methods

1. Neural networks (NN)
2. Original Support vector machines (RFF_SVM)
3. SVM with Gaussian Kernel (libSVM)

4. Decision trees (DT)

Linear human knowledge-based methods

5. Optimized Linear Predictive Model (OLPM)

OLPM = 0.030 - age - 0.340 - CE rim width - 1.100 - Surface regularity + 0.012 - CE volume



Our approaches

# Parameters c-index training c-index validation
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Our approaches

# Parameters c-index training c-index validation

4 0,771 0,817

NN 44 0,794 0,746
RFF_SVM 44 0,801 0,766
libSVM 44 0,751 0,700
RT 44 0,741 0,630

NN 4 0,740 0,751
RFF_SVM 4 0,747 0,783
libSVM 4 0,739 0,756
RT 4 0,696 0,681

NN with CV 4 0,791 0,825
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Model complexity
(# variables)
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Conclusions

1. Real machine learning
2. Use of only significant parameters

3. Take into account human ideas
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