

INTRODUCTION

- Perfusion MR techniques provides insights into dynamic processes not detectable during static conventional postGd sequences
- These additional data allow an adjunct knowledge of microvascular physiology of a wide variety of intracranial disease

INTRODUCTION

- However, It is essential for a correct interpretation a prior knowledge of:
 - Technical issues related to MRI
 - Technique
 - Theorical model
 - Sequence
 - Sources of errors / Pitfalls
 - Leakage effects
 - Susceptibility artifacts
 - Movement artifacts

DYNAMIC SUSCEPTIBILITY-WEIGHTED MRI

MR Perfusion Techniques With exogenous contrast agent T1-Weighted dynamic contrast-enhanced (DCE) MRI. T2-Weighted dynamic susceptibility-weigthed contrast-enhnaced (DSC) MRI Without exogenous contrast agent

- Arterial Spin Labeling (ASL)
- Blood Oxigen Level Dependent (BOLD)
- Intravoxel Incoherent Motion MRI (IVIM)

MR Perfusion Techniques

- With exogenous contrast agent
 - T1-Weighted dynamic contrast-enhanced (DCE) MRI
 - T2-Weighted dynamic susceptibility-weigthed contrast-enhnaced (DSC) MRI
- Without exogenous contrast agent – Arterial Spin Labeling (ASL)
 - Blood Oxigen Level Dependent (BOLD)
 - Intravoxel Incoherent Motion MRI (IVIM)

General DCE-Technique				
PARAMETER	T1 (DCE)			
Sequence	SPGR/FLASH/FFE 2D / 3D			
Flip angle	~ 30º			
TE	< 1.5 ms			
TR	< 7 ms			
Rate of Gd injection	2-5 cc/s			
Dose of Gadolinum	0.1mmol/Kg			

T1-DCE MRI: Variables

- K^{trans} Tranfer constant
 - Transfer coefficient from the plasma volume to the extravascular extracelullar volume
 - Reflect flow and permeability
 - Intact BBB → $K_{trans}=0$ Units: min⁻¹
 - K^{ep} Rate constant back
- Rate constant back to plasma space Units: min -1
- $V_{\rm e}\,$ Volume of the extravascular extracellular space Depends on the structure of cerebral tissue (celullarity) Units: mL/100g
- V_p Blood Plasma Volume Related to Cerebral Blood Volume
 - Units: mL/100g

Limitations of T1-DCE MRI

- Complexity of quantification of perfusion parameters
- Calculation of baseline T1 values and arterial input function (AIF) are prone to errors
- User-friendly software is not widely available

General DSC-Technique	
-----------------------	--

Sequence SE/ 2D Flip angle ~ 3	GRE- EPI Multislice 0º
Flip angle ~ 3	0º
TR ~1	000 ms
Rate of Gd injection 3-5	cc/s
Dose of Gadolinum 0.1	mmol/Kg

T2-DSC MRI: Variables

- CBV- Cerebral Blood Volume
 - Total volume of blood traversing a given region of brain
 - Units: ml/100gr
- CBF- Cerebral Blood Flow
- CBF is defined as the volume of blood traversing a given region of brain per unit time - Units ml/100gr/min
- MTT- Mean Transit Time
- Average time that blood takes to pass from arterial inflow to venous outflow
- Units: sec
- TP- Time-To-Peak - Time between the tracer injection and the maximum signal change
- Units: sec

Limitations of T2-DSC MRI • Arterial Input Function (AIF) should be calculated to determine absolute quantification - Pitfalls related to:

- Low cardiac input
- Low injection rate (<3ml/s)
- Leakage due to increase BBB permeability
 - Pitalls related to:
 - T1 leakage effect
 - T2 leakage effect
- Prone to susceptibility artifacts
 - Blood products, calcification, metal, air and bone

MR Perfusion Techniques

- With exogenous contrast agent
 - T1-Weighted dynamic contrast-enhnaced (DCE) MRI
 - T2-Weighted dynamic susceptibility-weigthed contrast-enhnaced (DSC) MRI
- Without exogenous contrast agent – Arterial Spin Labeling (ASL)
 - Blood Oxigen Level Dependent (BOLD)
 - Intravoxel Incoherent Motion MRI (IVIM)

Continuous vs Pulsed ASL

- Continuous ASL (CASL)
 - Higher Signal-to-Noise Ratio
 - More hardware requirements
 - Higher specific absorption rate (SAR)
- Pulsed ASL (PASL)
 - Labelling efficiency is higher than in CASL
 - T1 signal decays when longer inflow times are chosen

Pseudocontinuous ASL

- Intermediate technique between CASL and PASL
- Uses a series of discrete RF pulses
- Combine the advantages of PASL and CASL
 - Less hardware demand
 - Higher tagging efficiency
 - Higher Signal-to-Noise ratio

Comparison between differents perfusion MR techniques

	T1-Weighted (DCE)	T2*-Weighted (DSC)	ASL	
Temporal resolution	~3-6 s	~1-2 s	3-5 s	
Acquisition time	3-5 min	2 min	3-5 min	
Spatial resolution	1-mm-in-plane x 5 mm slices	2-mm-in-plane x 5 mm slices	3-mm-in-plane x 5 mm slices	
Model parameters	K ^{trans} , K ^{ep} , V _p , V _e , AUC	CBV, CBF, MTT	CBF	
Geometric artifacts	Low impact	Prone to problems at the skull base	Prone to problems at the skull base	
Main advantages	Assessment of BBB Permeability	High experience	Contrast agent are not required	
Sources of error	Calculation of T1 and AIF	Leakage effect	Low SNR	
Essig M et al. AJR 2013;200:24-34 (Modified				

PERFUSION IMAGING: Pitfalls and Clinical Applications update

Perfusion in Multiple Sclerosis: Physiopathology

Immunopathological studies suggests that vascular factor may contribute to the pathogenesis of MS

- Perivenular lymphocytic cuffing and intravascular fibrin deposition may induce venous obliteration
- Cytotoxic T cells may activate endotelial cells and activate a clotting cascade
- Inflammatory edema may impair microcirculation

Perfusion in Multiple Sclerosis: Findings

- Perfusion parameters are decreased in:
 - Normal appearing white matter (NAWM)
 - Normal appearing grey matter (NAGM)
 Basal ganglia, thalamus
 - Hypointense T1 plaques
- Hiperperfusion is demonstrated in:
 - Enhancing lesions
 - Elevation of perfusion may precede the BBB breakdown

Prediction of hemorrhage in ischemic stroke

- Acute ischemic stroke is treated with mechanical clot-retrieval devices and/or phramaceutical recanalization therapies (tPA)
- A succeful recanalization of the vessels improves the chances of recovery
- However critical complications such hemorrhagic transformation may result

Prediction of hemorrhage in ischemic stroke

- Clinical and radiologic findings have associated with higher risk of HT
 - Early contrast-enhancement on T1-WI
 - Volume of severe diffusion abnormality
 - Volume of severe perfusion abnormality
 - Leukoaraiosis
 - Prior cerebral microbleeds
- However, it remains difficult to identify patients at high risk of HT

Prediction of HT using permeability imaging

- Permeability variables have been described as predictors of HT in acute ischemic stroke
- Disruption of the BBB is a necessary, albeit not sufficient condition for HT
- Permeability in ischemic stroke patients is related to:
 - Clinical variables
 - Thrombolytic treatment
 - Time course

Functional MRI based on perfusion methods

- The most common method used for activation studies is based on the blood oxygen level-dependent (BOLD) contrast
- The location of BOLD signal change may not reflect the localitation of neuronal activity
- Better spatial location is found by CBF measurements

Patterns of perfusion in AD

- Hypoperfusion pattern has been described in parietotemporal association areas for AD and as a biomarker of rapid conversion to AD.
- However, results for the temporal lobes are inconsistent in early states of AD:
 - Hypoperfusion (Binnewijzend MA, Radiology 2013)
 - Hyperperfusion (Alsop, Neuroimage 2008)

CONCLUSIONS

- Different MRI techniques are currently available for cerebral perfusion measurements
- Prior kwnoledge of basic principles of each of these techniques helps to the neuroradiologist to identity pifalls
- Perfusion MR is now routinely used in daily routine and in research centers and universities