

REUNIÃO IBÉRICA DE NEURORRADIOLOGIA (SPNR/SENR)

Lisboa Parque das Nações 17 - 19 Outubro 2013

Fetal MRI update and new applications

Dra. Núria Bargalló. Consultora de Neuroradiología. Hospital Clínic i Provincial

Introduction

- US is the screening technique for the detection and follow up during gestation.
- However, fetal MR has a role in determining brain malformation and injury during the pregnancy.
- The sensibility and the specificity of the fetal MRI is similar or higher that US, depending of the experience of the radiologist/gynecologist.

Advantages of fetal MRI

- Better contrast between tissues.
- Better FOV.
 - Allow direct visualization of both hemispheres. US usually shows reverberation artifacts in the nearest anterior area.
 - Much better detailed visualization of the brain structures (cortex, parenchyma and sulcation.

www.medicinafetalbarcelona.org/

XLII Reunión Anual de la SENR - Lisboa 2013

Disadvantages of fetal MRI

- More expensive
- Claustrophobia and incommodity in the last trimester of gestation.
- Not always available
- Limited by movement artifacts (optimal at 28 weeks of gestation).
 - Ultra fast sequences are strongly recommended.
- Long term adverse effect are not well know

Legislation and security.

- Not allowed in the first trimester.
- Is not approved as the main technique in fetal screening.
- Its application is limited to cases that give information that helps with the diagnostic of brain anomalies and provides information about fetal management.
- Paramagnetic contrast administration is not recommended.

The information requested from the MR study cannot be acquired via nonionizing means (e.g., ultrasonography).

Safe MR Practices: 2007

ACR Guidance Document for The data are needed to potentially affect the care of the patient or fetus during the pregnancy.

> The referring physician does not feel it is prudent to wait until the patient is no longer pregnant to obtain these data.

Image Protocol

- 1.Scout: Large FOV and each plane (7mm slice).
- 2: Single shot fast spin echo/haste (3 planes)
 - -4 or 3mm slice thickening.
 - No gap or 0.10 gap.
 - -Large FOV

190 x 208 FOV and 3mm thickness and no gap.

208 x 306 FOV and 3mm thickness and 0.15mm gap.

www.medicinafetalbarcelona.org/

XLII Reunión Anual de la SENR - Lisboa 2013

Image Protocol

1. T1WI. 3DGRE T1 sequences Out-phase

300 x 328 FOV and 3mm thickness and no gap.

Image Protocol

Advanced image sequences: Diffusion Weighted Imaged

300 x328 FOV and 5mm thickness and 0.5 mm gap

Ischemic infarct.

www.medicinafetalbarcelona.org/

Fetal MR interpretation Biometrics.

D. Fronto-occipital

CLÍNIC

BARCEL
Hospital Uni
Cerebellum transversal

D. Biparietal cerebral and skull

Www Vermis AP

Longitud corpus callosum

Vermis high

XLII Reunión Anual de la SENR - Lisboa 2013

Fetal MR interpretation Biometrics.

Table 1 Observed raw centiles from a previous cohort study^{10,54}

GA (weeks)		$10-90^{th}$ centile							
	n	FOD (mm)	BPDc (mm)	BPDb (mm)	LCC (mm)	Vermis height (mm)	Vermis APD (mm)	Vermis surface area (mm²)	TCD (mm)
27	16	78-88	55-62	62-69	30-39	13-17	8-12	1 <u></u> 1	29-35
29	18	79-91	62-70	67-76	32-39	15-17	10-12	158-223	33-38
31	21	86-96	65-76	70-81	33-41	16-19	10-14	178-242	36-41
33	20	92-103	70-80	74-87	37-45	17-21	11-16	221-300	40-44
35	28	98-106	76-85	81-91	37-45	19-23	12-18	266-372	44-50

These are crude observed measurements without smoothing. APD, anteroposterior diameter; BPDc, cerebral biparietal diameter; BPDb, bone biparietal diameter; FOD, fronto-occipital diameter; GA, gestational age; LCC, length of corpus callosum; TCD, transverse cerebellar diameter.

Copyright © 2007 ISUOG. Published by John Wiley & Sons, Ltd.

Ultrasound Obstet Gynecol (2007).

www.medicinafetalbarcelona.org/

XLII Reunión Anual de la SENR - Lisboa 2013

Fetal MR interpretation Biometrics.

NORMALITY VALUES 26-40 weeks

NORMALITY VALUES 20-24 weeks

Prenatal magnetic resonance imaging:brain normal linear biometric values below 24 gestational weeks. Parazzini et al. Neuroradiology (2008) 50:877-883

www.medicinafetalbarcelona.org/

Brain development

Hospital Universitari

33 semanas. www.medicinafetalbarcelona.org/

Fetal MR interpretation Surcation paterns

XLII Reunión Anual de la SENR - Lisboa 2013

www.senr.org

Fetal MR interpretation Surcation paterns

www.medicinafetalbarcelona.org/

Fetal MR interpretation Surcation paterns

GYRATION NORMALITY

Table 2 Main results of gyration for each sulcus observed [9]

Present in mo	ne than 75%	of brains in	present MR	study

Sulci of the medial cerebral surface	Gestational ages (weeks)
Interhemispheric fissure Callosal sulcus Parieto-occipital fissure Cingular sulcus Secondary cingular sulci Marginal sulcus Calcarine fissure Secondary occipital sulci	22–23 WG 22–23 22–23 24–25 33 27 24–25 34
Sulci of the ventral cerebral surface Hippocampic fissure Collateral sulcus Occipitotemporal sulcus	22–23 26 33
Sulci of the lateral cerebral surface Superior frontal sulcus Inferior frontal sulcus Superior temporal sulcus (posterior part) Superior temporal sulcus (anterior part) Inferior temporal sulcus Intraparietal sulcus Insular sulci	29 29 27 32 33 28 34
Sulci of the vertex Central sulcus Precentral sulcus Postcentral sulcus	26 27 28

Fetal MRI: normal gestational landmarks for cerebral biometry, gyration and myelination. Garel et al. Childs Nerv Syst (2003) 19:422.425

www.medicinafetalbarcelona.org/

Fetal MR interpretation Cerebellum development

www.medicinafetalbarcelona.org/

Fetal MR interpretation Layer patter.

cortical plate

subplate

intermediate zone

ventricular zone

germinal matrix

till 28 gestational weeks

www.medicinafetalbarcelona.org/

Fetal MR interpretation Layer patter.

Up to 28 gestational weeks

www.medicinafetalbarcelona.org/

Indications of fetal MR

Primary indications for MRI include, but are not limited to:

A. Brain and Spine

- Congenital anomalies of the brain suspected or not adequately assessed by sonography [3,7-30]. These
 include but are not limited to:
 - a. Ventriculomegaly.
 - b. Agenesis of the corpus callosum.
 - c. Holoprosencephaly.
 - d. Posterior fossa anomalies.
 - e. Cerebral cortical malformations.

In addition, MRI can be helpful in screening fetuses with a family risk for brain abnormalities such as tuberous sclerosis, corpus callosal dysgenesis, or lissencephaly.

- Vascular abnormalities of the brain suspected or not adequately assessed by sonography [31,32]. These include, but are not limited to:
 - a. Vascular malformations.
 - b. Hydranencephaly.
 - c. Infarctions.
 - d. Monochorionic twin pregnancy complications.
- Congenital anomalies of the spine suspected or not adequately assessed by sonography [18,33-40]. These include, but are not limited to:
 - a Neural tube defects
 - b. Sacrococcygeal teratomas.
 - c. Caudal regression/sacral agenesis.
 - d Sirenomelia
 - e. Vertebral anomalies.

B. Skull, Face, and Neck

- Masses of the face and neck suspected or not adequately assessed by sonography [22,41-45]. These
 include, but are not limited to:
 - Venolymphatic malformations.
 - b. Hemangiomas.
 - c. Goiter.
 - d. Teratomas.
 - e. Facial clefts.
- MRI can be helpful in assessing airway obstruction that may impact parental counseling, prenatal management, delivery planning, and postnatal therapy [41-45].

ACR 2010

www.medicinafetalbarcelona.org/

Indications of fetal MR

- History of severe fetal abnormality in a previous pregnancy, but with normal US (ventriculomegaly, corpus callosum agenesis).
- Anomaly identified in US but that can not be detailed by technical problems. (Additional information).
- In situations where there is high risk of cranial anomalies, for example fetal infections (cytomegalovirus, toxoplasmosis or chickenpox) or ischemia (intrauterine death or monochorionic twin transfusion syndrome.

Congenital anomalies. Middle line malformation.

Agenesis of corpus callosum

More sensible that US.

www.medicinafetalbarcelona.org/

Congenital anomalies. Middle line malformation.

28 weeks

Other associated malformation!!!

Congenital anomalies. Middle line malformation.

26 w

34w

Other associated malformation!!!

www.medicinafetalbarcelona.org/

Congenital anomalies. Middle line malformation.

•Lobar Holoprosencephaly- Septo-optico dysplasia/ agenesis of septum pelucimum

Congenital anomalies. Middle line malformation.

• Middle line cysts

Aracnoid cyst of the velum interpositum

www.medicinafetalbarcelona.org/

XLII Reunión Anual de la SENR - Lisboa 2013

Congenital anomalies. Posterior fossa malformations.

Dandy Walker complex syndrome

Dandy-Walker Sd

Dandy-Walker Variant

www.medicinafetalbarcelona.org/

Congenital anomalies. Posterior fossa malformations.

• Cerebelum hypoplasia vs aracnoid cyst.

28 w

21 w.

www.medicinafetalbarcelona.org/

Congenital anomalies. Neuronal migration, surcation and cortical development malformations.

Neuronal proliferation disorders (hemimegancephaly)

Congenital anomalies. Neuronal migration, surcation and cortical development malformations.

Tuberous sclerosis.

www.medicinafetalbarcelona.org/

Congenital anomalies. Neuronal migration, surcation and cortical development malformations.

• Periventricular heterotopia

Congenital anomalies. Surcation and cortical development malformations.

Very often associated with other malformation!!!.

Congenital anomalies.

Surcation and cortical development malformations.

• Cortical dysplasia

Congenital anomalies.

Surcation and cortical development malformations.

Perirolandic dysplasia

Acquired pathology with brain destruction

• Hemorrhagic lesions:

Germinal matrix hemorrhage with intraventricular contamination and ventriculomegaly

Brain hemorrhage (monochoriotic twin Sd)

www.medicinafetalbarcelona.org/

XLII Reunión Anual de la SENR - Lisboa 2013

Acquired pathology with brain destruction

Ischemic lesions

Ischemic infarct with hemorrhagic transformation.

Table 1 Indications of fetal brain MRI in infections (CMV cytomegalovirus, PROM prolonged rupture of membranes)

Infection	Number	Abnormal MRI (%)	Normal MRI
Toxoplasmosis	97	15 (15)	82
CMV	37	15 (39)	21
Varicella	17	3 (18)	14
Parvovirus	4	1 (25)	3
Rubella	3	1 (33)	2
Toxoplasmosis + HIV	3	1 (33)	2
CMV + HIV	3	1 (33)	2
HIV + hepatitis C	1	0	1
Toxoplasmosis + E. coli	1	1	0
Maternal acute hepatitis	1	0	1
Maternal herpetic encephalitis	1	0	1
Acute maternal infection	(Guillain Barre syndrome due to coxsackie i		6
PROM and chorioamnionitis	3	1 (33)	2
Total	178 of 1,175 fetal brain MRI (14%)	41 (23)	137

A. James Barkovich Nadine Girard Fetal brain infections Childs Nerv Syst (2003) 19:501–507

Table 2 MRI findings in fetal infections

	Infection % (178 pati	ients)
Cerebral abnormality Ventricular dilatation Hemorrhage Destructive brain Calcifications Malformation	23 (41) 85 (35) 4.8 (2) 34 (14) 12 (5) 22 (9)	GIA

Barkovich and Girard. 2003

- White matter high signal abnormalities (edema or gliosis).
- Periventricular cysts (germinolytic cyst).
- Ventricular cysts.
- Temporal pole high signal (CMV)

Herpes Zoster infecction.

Microcephaly with enlargement of subarachnoid space.

CMV infection

www.medicinafetalbarcelona.org/

MR autopsy

www.medicinafetalbarcelona.org/

CMV infecction

Acquired pathology Tumors

Brain stem astrocytoma

Giant cell subependimal astrocytoma

www.medicinafetalbarcelona.org/

Advanced fetal MRI: Diffusion tensor imaging, spectroscopy, dynamic MRI, resting-state functional MRI

Salil Soman^a, Gregor Kasprian^b, Veronika Schopf^b, Vanessa Berger-Kulemann^b, Ursula Nemec^b, Christian Mitter^b and Daniela Prayer^{b,*}

^aDepartment of Radiology, Neuroradiology Section, Stanford University, Stanford, CA, USA
^bDepartment of Radiology, Division of Neuro- and Musculoskeletal Radiology, Medical University of Vienna, Vienna, Austria

Spectroscopy

www.medicinafetalbarcelona.org/

Hospital Universitari

Difusion tensor imaging

S. Soman et al. / Advanced fetal MRI

Fig. 3. Fetal diffusion tensor imaging demonstrating corpus callosum (blue) and sensorimotor tract (green) fibers in a 28 wk old fetus in utero.

Summary.

- Fetal MRI is a complementary diagnostic tool for CNS fetal abnormalities.
- Is very sensible to detect anomalies related to infections or monochorial twins pathology and has to be performed when the US is normal.
- More sensible that US in detecting abnormalities related to migration, surcation and cortical organization.
- Advances sequences as DWI can help to detect acute ischemic lesions. Although other sequences are difficult to applied due to movements artefacts.

REUNIÃO IBÉRICA DE NEURORRADIOLOGIA (SPNR/SENR)

Lisboa Parque das Nações 17 - 19 Outubro 2013

Molto Obligado

Muchas Gracias

